EIGENVALUES AND DIOPHANTINE APPROXIMATION

GEON HO CHOE

Put $||x|| = \operatorname{dist}(x, \mathbf{Z})$ for real x, where \mathbf{Z} is the set of integers. Let a be an irrational number and b any real number. H. Kesten [3] proved that the sum

$$\sum_{n=1}^{\infty} \frac{||nb||^2}{n^2 ||na||^2}$$

is finite if and only if $b \equiv k a \pmod{1}$ for some integer k. This is equivalent to the convergence of the series

$$\sum_{n=1}^{\infty} \frac{|1 - e^{2\pi i n b}|^2}{n^2 |1 - e^{2\pi i n a}|^2}$$

since there exist two positive constants A, B satisfying

$$A||x|| \le |1 - e^{2\pi ix}| \le B||x||.$$

Later K. Peterson [4] found a simple proof using Hilbert space methods. And H. Helson [1],[2] obtained the same result while studying the properties of cocycles defined on the unit circle. In this article, by further exploiting the idea in K. Peterson's paper [5], it is shown that in two dimensional case there is a similar Diophantine approximations of irrational numbers.

We identify the 2-torus \mathbf{T}^2 which is a compact abelian group with $[0,1)\times[0,1)$ where [0,1) is the half-open unit interval in the real line. Choose two irrational numbers α , $\beta\in[0,1)$ such that $1,\alpha,\beta$ are linearly independent over the field of rational numbers. For real number x, let $\{x\}$ denote the fractional part of x. Let Γ be the subgroup of \mathbf{T}^2 generated by $\gamma_0=(\alpha,\beta)\in\mathbf{T}^2$.

Received August 8, 1991.

A real valued function v on $\Gamma \times \mathbf{T}^2$ is called an additive coboundary if

$$v(\gamma, g) = w(g + \gamma) - w(g)$$

for some real valued measurable function w where $\gamma \in \Gamma$, $g \in \mathbf{T}^2$. And if w is square-integrable, then v is called an L^2 – coboundary. Note that the relation

$$v(\gamma_0,g)=w(g+\gamma_0)-w(g)$$

defines a coboundary v uniquely, and v satisfies $v(n\gamma_0, g) = w(g + n\gamma_0) - w(g)$.

Choose δ , $\epsilon \in (0,1)$ and put $E = \{(x,y) : 0 \le x < \delta, 0 \le y < \epsilon\} \subset \mathbf{T}^2$. Consider the function $v = \chi_E - \delta \cdot \epsilon$ where χ_E is the characteristic function of E. We will see that v is not an L^2 -coboundary for some δ , ϵ . We expand v(x,y) into its Fourier series:

$$v(x,y) = \sum_{-\infty}^{\infty} \sum_{-\infty}^{\infty} a_{mn} e^{2\pi i (mx + ny)}$$

where

$$a_{mn} = -\frac{1}{(2\pi)^2} \cdot \frac{1}{mn} (e^{-2\pi i m \delta} - 1)(e^{-2\pi i n \epsilon} - 1), \quad mn \neq 0,$$

$$a_{m0} = -\frac{i\epsilon}{2\pi} \cdot \frac{1}{m} (e^{-2\pi i m \delta} - 1), \quad m \neq 0,$$

$$a_{0n} = -\frac{i\delta}{2\pi} \cdot \frac{1}{n} (e^{-2\pi i n \epsilon} - 1), \quad n \neq 0, \quad \text{and}$$

Suppose that there exists a square-integrable function w on T^2 such that $v(x,y)=w(x+\alpha,y+\beta)-w(x,y)$, that is, v is an L^2 -coboundary. Now let

 $a_{00} = 0.$

$$w(x,y) = \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} b_{mn} e^{2\pi i (mx+ny)}$$

be the formal Fourier expansion of w. Then $a_{mn} = (e^{2\pi i(m\alpha + n\beta)} - 1)b_{mn}$. So the necessary and sufficient condition for the existence of such a square-integrable function w is the convergence of the following three sums:

$$\begin{split} \sum_{m \neq 0} \sum_{n \neq 0} \frac{|e^{-2\pi i m \delta} - 1|^2 |e^{-2\pi i n \epsilon} - 1|^2}{m^2 n^2 |e^{-2\pi i (m\alpha + n\beta)} - 1|^2}, \\ \sum_{m \neq 0} \frac{|e^{-2\pi i m \delta} - 1|^2}{m^2 |e^{-2\pi i m \alpha} - 1|^2}, \\ \sum_{n \neq 0} \frac{|e^{-2\pi i n \epsilon} - 1|^2}{n^2 |e^{-2\pi i n \beta} - 1|^2}. \end{split}$$

By Kesten's theorem, the second and the third sums are finite if and only if $\delta \equiv k\alpha$, $\epsilon \equiv \ell\beta \pmod{1}$ for some integers k, ℓ . Now suppose that the first sum is also finite. That is,

$$S_{\alpha,\beta}(k,\ell) \equiv \sum_{m \neq 0} \sum_{n \neq 0} \frac{|e^{-2\pi i m k \alpha} - 1|^2 |e^{-2\pi i n \ell \beta} - 1|^2}{m^2 n^2 |e^{-2\pi i (m \alpha + n \beta)} - 1|^2} < \infty.$$

Put $q=e^{2\pi i w}$. Then we get $q(x+\alpha,y+\beta)=e^{2\pi i v(x,y)}q(x,y)=e^{2\pi i(-\delta\epsilon)}q(x,y)=e^{2\pi i(-\delta\epsilon)}q(x,y)=e^{2\pi i(-\delta\epsilon)}q(x,y)$. Now we define a unitary operator U on $L^2(\mathbf{T})$ by $(Uf)(x,y)=f(x+\alpha,y+\beta)$. Then the eigenvalues of U are of the form $e^{2\pi i(m\alpha+n\beta)}$ where m,n are integers. Since $Uq=e^{2\pi i\{k\alpha\}\{\ell\beta\}}q$, we have $\{k\alpha\}\{\ell\beta\}\equiv m_1\alpha+n_1\beta\pmod{1}$ for some m_1,n_1 . Hence $k\alpha\cdot\ell\beta\equiv m\alpha+n\beta\pmod{1}$ for some m,n.

By summarizing the previous results, we can answer the question raised by K. Peterson [5].

PROPOSITION 1. Let $E = \{(x,y) : 0 \le x < \gamma, 0 \le y < \delta\} \subset \mathbf{T}^2$. Then we have the following:

- (i) The function $\chi_E \gamma \cdot \delta$ is not an L^2 -coboundary with possible exceptions when γ , δ are integral multiples of α , β (mod 1), respectively.
- (ii) Suppose $\gamma \equiv k\alpha$, $\delta \equiv \ell\beta$ and $k\ell\alpha\beta \not\equiv m\alpha + n\beta \pmod{1}$ for some integers k, ℓ , $k\ell \neq 0$. Then the functions $\chi_E \gamma \cdot \delta$ is not an L^2 -coboundary.

(iii) If $S_{\alpha,\beta}(k,\ell) < \infty$, then $k\ell\alpha\beta \in \mathbf{Z} \cdot \alpha + \mathbf{Z} \cdot \beta + \mathbf{Z}$.

COROLLARY. If $\alpha\beta$ is a rational number, then $S_{\alpha,\beta}(1,1) = \infty$.

Proof. Let $r = \alpha \beta$. Then 0 < r < 1 and $r = m\alpha + n\beta + \ell$ for some integers m, n, ℓ . Hence the linear independence of the three numbers 1, α, β implies that $r = \ell$, which is a contradiction.

PROPOSITION 2. Suppose $S_{\alpha,\beta}(k,\ell)$ is finite for some $k \neq 0$, $\ell \neq 0$. If one of α , β is an algebraic number, then the other is also algebraic and $\deg(\alpha) = \deg(\beta) > 2$.

Proof. Let $\mathbf{Q}(a)$ denote the smallest extension field of \mathbf{Q} containing an irrational number a. Since $k\ell\alpha\beta\equiv m\alpha+n\beta\pmod{1}$, $\alpha(k\ell\beta-m)=n\beta+p$, $\alpha=(n\beta+p)/(k\ell\beta-m)$ for some integers m, n and p. Hence α belongs to $\mathbf{Q}(\beta)$. Similarly, β belongs to $\mathbf{Q}(\alpha)$, too. Hence $\mathbf{Q}(\alpha)=\mathbf{Q}(\beta)$, and α and β have the same algebraic degree. Now suppose that $\deg(\alpha)=\deg(\beta)=2$. Since $\mathbf{Q}(\alpha)$ has dimension 2 over the field \mathbf{Q} and since 1, α , β are all in $\mathbf{Q}(\alpha)$, they are linearly dependent over \mathbf{Q} , which is a contradiction.

References

- 1. H. Helson, Cocycles on the circle, J. Operator Theory 16 (1986), 189-199.
- H. Helson, The Spectral Theorem, Lecture Notes in Math. 1227, Springer-Verlag, New York, 1986.
- 3. H. Kesten, On a conjecture of Erdős and Szüsz relating to uniform distribution mod 1, Acta Arith. 12 (1966), 93-212.
- 4. K. Peterson, On a series of cosecants related to a problem in ergodic theory, Compositio Math. 26 (1973), 313-317.
- 5. K. Peterson, The spectrum and commutant of a certain weighted translation operator, Math. Scandinavica 37 (1975), 297-306.

Department of Mathematics Korea Advanced Institute of Science and Technology Taejeon 305–701, Korea