GELFAND-KIRILLOV DIMENSION OF AN ALGEBRA WITH EXTENSION OF THE BASE FIELD

KYUNG HEE KIM

1. Introduction

Let A be an algebra over a field k. Let B be the k-algebra $A \otimes_k k(x)$ where k(x) is the rational function field. I have been interested in Krull dimension of B (in the sence of Gabriel and Rentschler). The Gelfand-Kirillov dimension and Krull dimension in the sence of Gabriel and Rentschler share many formal properties. This raise the question about the Gelfand-Kirillov dimension of the k-algebra B.

The Krull dimension of B is between the Krull dimension of A and the Krull dimension of A plus one. We obtained the exact formula for the Krull dimension of B when A is right Noetherian and has finite right Krull dimension ([2]). Furthermore, some sufficient conditions for $\operatorname{Kdim}(B)$ to be $\operatorname{Kdim}(A)$ and to be $\operatorname{Kdim}(A) + 1$ were obtained ([3]).

However, the problem of Gelfand-Kirillov dimension has a very simple solution: GKdim(B) is equal to GKdim(A)+1 (from now on GKdim(R) denotes the Gelfand-Kirillov dimension of a k-algebra R). It is easily shown that $GKdim(AS^{-1}) = GKdim(A)$ where S is a multiplicatively closed subset of regular elements in the center of a k-algebra A. $A \otimes_k k(x_1, \dots, x_n)$ is isomorphic to $(A[x_1, \dots, x_n])S^{-1}$ as a k-algebra where S is the set of nonzero polynomials in $k[x_1, \dots, x_n]$. So $GKdim(A \otimes_k k(x_1, \dots, x_n)) = GKdim(A[x_1, \dots, x_n]) = GKdim(A)+n$. But the Krull dimension of $A \otimes_k k(x_1, \dots, x_n)$ is still unknown when n > 1.

When n = 1, it can be shown that the $GKdim(A \otimes_k k(x))$ is equal to GKdim(A) + 1 interpreting $A \otimes_k k(x)$ as a tensor product.

Unless explicity stated to the contrary, A is an algebra over a field k. For the definition and basic properties of Gelfand-Kirillov dimension, the readers are referred to [1].

Received July 27, 1991.

This work was supported by a Yonsei Research Grant for 1990.

2. The Gelfand-Kirillov dimension of $A \otimes_k k(x_1, \dots, x_n)$ as a localization

Let S be the set of nonzero polynomials in $k[x_1, \dots, x_n]$.

PROPOSITION 2.1. (4.2 Proposition, [1]) If Ω is a multiplicatively closed subset of regular elements in the center of A, then GKdim $(A\Omega^{-1})$ is equal to GKdim(A).

Proof. Obviously, Ω is an automatically an Ore set. Since A is a subalgebra of $A\Omega^{-1}$, $GKdim(A) \leq GKdim(A\Omega^{-1})$. So, all we need to show is that $GKdim(A\Omega^{-1}) \leq GKdim(A)$.

Let W be a finite dimensional subspace of $A\Omega^{-1}$ and let $s \in \Omega$ be a common denominator for the basis elements of W (such an element s exists!). Then $Ws \subseteq A$. So, V = Ws + ks + k1 is a finite dimensional subspace of A and satisfies $W^n \subseteq V^n s^{-n}$ for each natural number n. Thus $\dim(W^n) \leq \dim(V^n)$, and hence $\dim_k(k+W+W^2+\cdots+W^n) \leq \dim_k(k+V+V^2+\cdots+V^n)$ for all n. This shows that $\operatorname{GKdim}(A\Omega^{-1}) \leq \operatorname{GKdim}(A)$.

PROPOSITION 2.2. $A \otimes_k k(x_1, \dots, x_n)$ is isomorphic to $(A[x_1, \dots, x_n])$ S^{-1} .

Proof. Consider the map

$$\theta: A[x_1, \cdots, x_n] \longrightarrow A \otimes_k k(x_1, \cdots, x_n)$$

given by

$$\theta(\sum_{i} a_{i} x_{1}^{k_{i1}} x_{2}^{k_{i2}} \cdots x_{n}^{k_{in}}) = \sum_{i} a_{i} \otimes x_{1}^{k_{i1}} x_{2}^{k_{i2}} \cdots x_{n}^{k_{in}}).$$

Then θ is an embedding. Moreover $\theta(s)$ is invertable in $A \otimes_k k(x_1, \dots, x_n)$ for each s in S. Hence there is a homomorphism

$$\theta: (A[x_1, \cdots, x_n])S^{-1} \longrightarrow A \otimes_k k(x_1, \cdots, x_n)$$

such that $\theta \iota = \theta$, where

$$\iota: A[x_1, \cdots, x_n] \longrightarrow (A[x_1, \cdots, x_n])S^{-1}$$

is the inclusion of $A[x_1, \dots, x_n]$ into $(A[x_1, \dots, x_n])S^{-1}$, by the universal mapping property. It is easy to show that θ is one-to-one and onto. Thus θ is a k-algebra isomorphism.

COROLLARY 2.3. $\operatorname{GKdim}((A[x_1,\cdots,x_n])S^{-1}) = \operatorname{GKdim}(A[x_1,\cdots,x_n]).$

Proof. Since S is a multiplicatively closed subset of regular elements and every element in S is in the center of $A[x_1, \dots, x_n]$, it follows from Proposition 2.1.

COROLLARY 2.4. $\operatorname{GKdim}(A \otimes_k k(x_1, \dots, x_n)) = \operatorname{GKdim}(A) + n$.

Proof. By Proposition 2.2,

$$\operatorname{GKdim}(A \otimes_k k(x_1, \dots, x_n)) = \operatorname{GKdim}((A[x_1, \dots, x_n])S^{-1}).$$

Hence

$$\operatorname{GKdim}(A \otimes_k k(x_1, \dots, x_n)) = \operatorname{GKdim}(A[x_1, \dots, x_n]) = \operatorname{GKdim}(A) + n.$$

It is a very desirable result that $GKdim(A \otimes_k k(x_1, \dots, x_n))$ depends on the GKdim(A) and the number of parameters.

3. The Gelfand-Kirillov dimension of $A \otimes_k k(x)$ as a tensor product

Note that

$$\operatorname{GKdim}\{k(x_1,\cdots,x_n)\}=\operatorname{GKdim}(k)+n$$

because $k(x_1, \dots, x_n)$ is a localization of $k[x_1, \dots, x_n]$. Moreover, we have the following proposition;

PROPOSITION 3.1. (Proposition 3.12 [1]) If $GKdim(A) \leq 2$, then $GKdim(A \otimes_k B) = GKdim(A) + GKdim(B)$.

Proof. (See the proof in [1].)

We can apply this proposition to $A \otimes_k k(x)$ since GKdim(k(x)) = 1 < 2, and we obtain the following;

COROLLARY 3.2. $\operatorname{GKdim}(A \otimes_k k(x_1, \dots, x_n)) = \operatorname{GKdim}(A) + n$ for n = 1, 2.

References

- 1. G. R. Krause and T. H. Lenegan, Growth of algebras and Gelfand-Kirillov dimension, Research Notes in Mathematics 116, Pitman, London, 1985.
- 2. T. H. Hodges, K. H. Kim and Richard Resco, Behaviour of Krull dimension under extension of the base field, Comm. in Algebra 19(1) (1991), 143-156.
- 3. K. H. Kim, Krull dimension of tensor products of algebras II, Comm. of the Kor. Math. Soc..
- 4. Bo Stenstrom, Rings of Quotients, Springer-Verlag, Berlin, 1975.

Department of Mathematics Yonsei University Kangwondo 222–701, Korea