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GELFAND-KIRILLOV DIMENSION OF AN ALGEBRA
WITH EXTENSION OF THE BASE FIELD

KYUuNG HEE KM

1. Introduction

Let A be an algebra over a field k. Let B be the k—algebra A @i
k(z) where k(z) is the rational function field. I have been interested
in Krull dimension of B (in the sence of Gabriel and Rentschler). The
Gelfand-Kirillov dimension and Krull dimension in the sence of Gabriel
and Rentschler share many formal properties. This raise the question
about the Gelfand-Kirillov dimension of the k—algebra B.

The Krull dimension of B is between the Krull dimension of A and
the Krull dimension of A plus one. We obtained the exact formula for
the Krull dimension of B when A is right Noetherian and has finite
right Krull dimension ([2]). Furthermore, some sufficient conditions for
Kdim(B) to be Kdim(A) and to be Kdim(A) + 1 were obtained ([3}).

However, the problem of Gelfand-Kirillov dimension has a very simple
solution : GKdim(B) is equal to GKdim(A)+1 (from now on GKdim(R)
denotes the Gelfand-Kirillov dimension of a k—algebra R). It is easily
shown that GKdim(AS™!) = GKdim(A) where S is a multiplicatively
closed subset of regular elements in the center of a k—algebra A. A ®&
k(z1,--- ,z,) is isomorphic to (A4[z1, - ,7,])S™! as a k—algebra where
S is the set of nonzero polynomials in k[zy,---,z,]. So GKdim(A ®;
k(z1,- ,z,)) = GKdim(Alz,, - ,z,]) = GKdim(A)+n. But the Krull
dimension of A @ k(zy,--- ,7y) is still unknown when n > 1.

When n = 1, it can be shown that the GKdim(A ® k(z)) is equal to
GKdim(A) + 1 interpreting A ®x k(z) as a tensor product.

Unless explicity stated to the contrary, A is an algebra over a field
k. For the definition and basic properties of Gelfand-Kirillov dimension,
the readers are referred to [1].
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2. The Gelfand-Kirillov dimension of A Qx k(x3,--- ,xn) as a
localization

Let S be the set of nonzero polynomials in k[z1,--- ,z4).

PROPOSITION 2.1. (4.2 Proposition, [1]) If Q is a multiplicatively
closed subset of regular elements in the center of A, then GKdim
(AQ™1) is equal to GKdim(A4).

Proof. Obviously, Q is an automatically an Ore set. Since A is a
subalgebra of AQ™!, GKdim(A4) < GKdim(AQ™?). So, all we need to
show is that GKdim(AQ~!) < GKdim(A).

Let W be a finite dimensional subspace of AQ~! and let s € Q2 be a
common denominator for the basis elements of W (such an element s
exists !). Then Ws C A. So, V = Ws + ks + k1 is a finite dimensional
subspace of A and satisfies W™ C V™s™™ for each natural number n.
Thus dim(W™) < dim(V"), and hence dimg(k+W + W2 +...+ W") <
dimg(k+V +V2+4...4+V") for all n. This shows that GKdim(AQ ™) <
GKdim(4).

PROPOSITION 2.2. AQik(z;,--- ,z,) is isomorphic to (Alz1,--- ,z,])
S-L

Proof. Consider the map

0: Alzy, - ,z0] — AQr k(z1,--- ,Zn)

given by
9(2 ,;z:k":l: .xﬁin) =Zai®$f“$§u zﬁ:n)
i

Then 6 is an embedding. Moreover 8(s) is invertable in AQk(z1,--- ,Tn)
for each s in S. Hence there is a homomorphism

6: (A[(Cl,--. ,xn])s_l Y A®k k(;);l,... ’zn)
Suc}l that 91, = 0, Where
v: Afgy, -, zq] — (Alzy, - ,:tn])s—l

is the inclusion of A[z4,--- ,z,]into (Afr,,--- ,2,])S™!, by the universal
mapping property. It is easy to show that 8 is one-to-one and onto. Thus
0 is a k—algebra isomorphism.
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COROLLARY 2.3. GKdim((4[z1,---,z,))S™1) = GKdim(A[z,,-- -,
Ty))-

Proof. Since S is a multiplicatively closed subset of regular elements
and every element in S is in the center of Alzy,--- ,z,], it follows from
Proposition 2.1.

CoOROLLARY 2.4. GKdim(A Qi k(z1,- - ,2,)) = GKdim(A) + n.
Proof. By Proposition 2.2,

GKdim(A ®k k(z1,- - ,20)) = GKdim((A[z1,--- ,24))S™H).
Hence

GKdim(A®xk(z1,: -+ ,z,)) = GKdim(A[z1,- - ,z5]) = GKdim(A) +n.

It is a very desirable result that GKdim(A ®; k(z1,--- ,,)) depends
on the GKdim(A) and the number of parameters.

3. The Gelfand-Kirillov dimension of A ®y k(x) as a tensor
product

Note that
GKdim{k(z;,--- ,z,)} = GKdim(k) + n
because k(zy,---,z,) is a localization of k{zy,---,z,]. Moreover, we

have the following proposition ;

ProPOSITION 3.1. (Proposition 3.12 [1]) If GKdim(A4) < 2, then
GKdim(A ®x B) = GKdim(A) + GKdim(B).

Proof. (See the proof in [1].)
We can apply this proposition to A®k(z) since GKdim(k(z)) =1 <

2, and we obtain the following ;

COROLLARY 3.2. GKdim(A @ k(z,--- ,z,)) = GKdim(A) + n for
n=172
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