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A NOTE ON THE TOPOLOGICAL INDICES

HONG JAE LEE AND KyU HYUN SOHN

Let MS04n be the 4n-dimensional Thorn's bordism group. Then
MSO* ® Q (Q : rationals) is generated by p2(C), p4(C), ... ,p2n(c)
over Q ([2]), where pk(C) is the k-dimensional complex projective space.

In [4] the authors intimated that there exists an elliptic operator Do
such that

where it(Do) is the topological index of Do, L[P2k(C)J the L-genus
of p2k(C) and I(p2k(C» the index of p2k(C). We also proved that
L[p2k(C)] = I(p2k(C» = 1 in [4].

In this paper we shall show that for the k-dimensional complex pro­
jective space pk(C) there exists an elliptic operator

i::Omod 2 i::Omod 2

such that it(D) = k + 1, where T*(X) is the cotangent bundle over
X = X 2k = pk(C)R and pk(C)R is the underlying real oriented Coo
manifold of pk(C) (Theorem 7). Hence for X 4n = p2k(C)R it is true
that

Eventually, we shall verify that the topological indices and the cobordism
theory are deeply related with [4J and this paper.

By the definition of the Chern classes and the Euler class with respect
to a complex vector bundle w = (E(w), 7l", B(w» we have
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where dimcw = n (C : complexes), WR, WR the underlying real vector
bundle of w, e(wR) the Euler class of WR and Ci(w) the ith Chern class
of ([2]).

For pk(C), let (r(pk (C», 11", pk(C» be the tangent bundle over pk(C)
and let us put

and
C(pk(C) = 1 + Cl (pk(c» + ... + Ck(pk(C»,

which is called the total Chern class.
Since H 2(pk(C);Q) ~ Q we can take the generator a E H 2(pk(C),Q)

such that a k is the fundamental cohomology class of pk(C). Moreover
we have the following properties

(i) C(pk(C» = (1 + a)k+I(ak+I = 0)
(ii) Ci(pk(C» == (k + l)ci a i.

PROPOSITION 1. For the Euler class e(pk(C)R) of the underlying real
vector bundle of (r(pk(C», 11", pk(C» we have e(pk(C)R) == (k + l)ak.

Proof. Since
e(pk(C)R) == Ck(pk(C»

([2]) by (ii) above it is clear that

Since the tangent vector bundle (r(pk(C», 11", pk(C» is a complex
bundle

r(X) = (r(X), 11", X)

is a 2k-dimensional oriented real vector bundle ([5]) over X, where X ==
X 2k == pk(C)R. We put as follows.

Pi(X) == Pi(r(X» == the itkPontrijagin class of r(X)

and
P(X) = p(r(X» == the total Pontrijagin class of r(X).
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For the generator (}' of H 2(X : Q) ~ Q we have the following ([1], [2]) :
(iii) P(X) = (1 + (}'2)k+l

(iv) Pi(X) = (k+l)Ci(}'2i.

Note that dimR(X) = 2k and for m > [~]Pm(X) E H 4m (X 2k : Q) = o.
k ~

Thus for m = ['2]

P(X) =1 + P1(X) + ... + Pm(X)

= 1 + (k + 1)(}'2 + ... + (k+l)cm(}'2m.

PROPOSITION 2. e( r(X) ® C) = o.
Proof. By (iv) above and e((pk(C) @ C)R) = {e(pk(C»R}2 ([5]) we

have the following :

e((r(X) @ C)R) = {e(pk)(C)R)}2

= ((k + 1)(}'k)2(by Proposition 1)

= (k + 1)2(}'2k(E H4k(X2k
: Q»

= o.

As in [4] for the L-genus L[p2k(C)] of p2k(C) we have the following:

DEFINITION 3. A SO(2k)-structure on X 2k = pk(C)R is defined by
an isomorphism

'P : P XSO(2k) R 2k ~ T(X)

which is preserving orientation, where P is a principal SO(2k )-bundle
ever X = X 2k , R 2k has the usual Riemannian metric and T(X) the
tangent bundle of X which has the usual orientation ([5]).

Let B SO(2k) be the classifying space of SO(2k) ([1]) and let E SO(2k)
be the universal principal SO(2k)-bundle ([3]). Then there exists a con­
tinuous map

f : X ---+ B SO (2k)
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such that
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j*(ESO(2k» = P,

where f is called a classifying map for P. For

R- 2k E R2k= SO(2k) XSO(2k)

we also have
j*(ft2k) ~ T(X).

Let T*(X) be the dual bundle of T(X) (i.e., the cotangent bundle of
X), and let us put for V = ii2k such that

B(V*) = {e E T*(X)llIell :5 I} (V* = (R2&:)*)

and
S(Y*) = {e E T*(X)llIell = I}.

Let M and N be complex SO(2k)-modules which are isomorphic to
each other (dimRMR = 2k = dimRNR). We assume that there is a
SO(2k)-equivalent map

q: S(Y*) -+ lso(M,N)

where Iso(M,N) is the set of all SO(2k)-isomorphisms between M and
N. For

E = P x SO(2k)M and F = P x SO(2k)N

q induces an isomorphism

where 1r : B(V*) -+ X is the projection and we put 1rIS(Y*) = 1r. IT we
put

CIX>(E) = { 9 : X -+ Elg is a Coo cross section of E}

and take a differential operator

D : CIX>(E) -+ CIX>(F)
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such that the symbol (J(D) of D is just (Jp Le.,

(J(D) = (Jp'

Hence

29

d(7(*E, 7(*F, (Jp) E K(B(V*), S(V*»

where 7( : B(V*) -+ X is the projection and K(B(V*), S(V*» is the
relative K-group on (B(V*), S(V*». We define such that

(* * *) Ch(D) = I**{( _l)kCh(E) -=- Ch(F)}
e(V*)

([3], [6]) where Ch(E) is the Chem character of E, f: X -+ B)sO(2k) is
the classifying map of P j

00

H**(X : Q) = IT Hi(X : Q)
i=l

and
1** : H**(Bso(2k) : Q) ---t H**(X : Q)

is induced from the classifying map f.
DEFINITION 4. For X = pk(C) there exist XI,'" ,Xk in H**(X : Q)

such that

"1 + C1(T(X» + ... + C,,(T(X» = IT(1 + Xi)
i=l

where Ci(T(X» = Ci(p"(C» ([3]). In this case the Todd class T(T(X»
of T(X) is defined as

"T(T(X» = IT(1- e-Xi
).

i=l

In particular, if we use the same notations for T*(X) (~ T(X» as above
we have

"T(X) = T(T*(X» = II(l- e-Xi
)

i=l
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DEFINITION 5. With the above notations for an elliptic operator

with the symbol (1(D) = (1p as in (**) the topological index it(D) of D
is defined as

it(D) = (Ch(D)T(X»)[X]

where [X) is the fundamental homology class of X 2k(= X) = pk(C)R.

LEMMA 6. For the oriented Riemanman manifold

let

D: C OO
( L A'(T*(X) 0 C) -+ C OO

( L A'(T*(X) 0 C»
I:=Omod 2 1:=1 mod 2

be an elliptic operator with its symbol (1(D) = (1p as in (**). Then for
the Euler class e(X) of T(X) and the fundamental homology class [Xl
of X = X 2k

it(D) = e(X)[X).

Proof. We put such that

V = R 2k
, V* = P XSO(2k) V*

and
M = L A'(V* 0 C), if = L A'(V* 0 C)

where,

1:=0 mod 2 1:=0 mod 2

p X SO(2k)V ~ T(X)

is a SO(2k)-structure on X.
Since V ~ V* as SO(2k)-modules, if V has the weights Yt,·· . ,Yk

then V 0 C ~ V* 0 C has the weights ±Yb· .. ,±Yk ([3], [6]). Moreover,
from

k k

L(-l)iCh(Ai(V* 0 C» = II(1- eYi)(l- e-Yi )

i=1 i==1
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([3], [6]), we have

k

Ch(M) - Ch(N) = IT(1 - eYi )(l - e-Yi ).

i=1

Thus by (* * *) above we have the following ;

Ch(D) = 1**« _l)k Ch(M) :- Ch(N»
e(V*)

=I**(IT (1 - eYi )(1 - e-Yi »
i=1 -Vi

because that e(V*) = VI ... Vk ([3], [6]).
On the other hand, by Definition 4

T(X) = T(T*(X) @ C) = T(V* @ C)
k

I**(IT Vi( -Vi) )
- . (1 - eYi )(l - e-Yi ) •

1=1

Therefore,

Ch(D) (X) = f**(rr
k

(1 - eYi )e1- e-Yi
) • Yie -Vi) )

i=1 -Vi (1 - eYi )(1 - e-Yi )

k

= 1**(IIvi) = f**(e(V*»
i=1

= e(X)

and thus
it(D) = (Ch(D)T(X»)[X] = e(X)[X].

31
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THEOREM 7. For the elliptic operator D as in Lemma 6 it(D) ­
(k + l)L(pk(C» = k + 1.

Proof. For X 2k = pk(C)R we have

e(X) = (k + l)ak

by Proposition 1, where a is the generator of H 2(X2k
: Q) ~ Q. The

fundamental homology class [Xl is the generator of H2k(X2k
: Q) ~ Q

such that
a"([X]) = 1.

Hence e(X)[X] = (2k + 1)a2k([X]) = 2k + 1.
Since

as in [4] we have

it(D) = (2k + 1)L[p2k(C)] = 2k +1
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