Comm. Korean Math. Soc. 7(1992), No. 1, pp. 15-24

ON THE RELATIVE HOMOTOPY JIANG SUBGROUPS

SEOUNG HO LEE

D.H.Gottlieb ([2],[4]) defined and studied the evaluation subgroups $G_n(X)$ of the homotopy groups $\pi_n(X)$ of a topological space X. Recently, $G_n(X)$ was generalized by Woo and Kim [9] as following; Let (X, A, x_0) be a triplet. Consider the class of continuous maps $F : A \times S^n \to X$ such that $F(a, s_0) = f(a)$, then the map $h: (S^n, s_0) \to (X, x_0)$ defined by $h(s) = F(x_0, s)$ represent an element $[h] \in \pi_n(X, x_0)$ for a given $f: (A, x_0) \to (X, x_0)$. The set of all elements $[h] \in \pi_n(X, x_0)$ obtained in the above manner from some F was denoted by $G_n^f(X, A, x_0)$.

The exact sequence of homotopy groups combined with relative homotopy groups for a pair (X, A) plays an important role in algebraic topology. Woo and Lee [11] defined the relative evaluation subgroup $G_n^{Rel}(X, A, x_0)$ of $\pi_n(X, A, x_0)$ as following; an element $\alpha \in \pi_n(X, A, x_0)$ is in $G_n^{Rel}(X, A, x_0)$ if there exists a map $H : (X \times I^n, A \times \partial I^n, x_0 \times J^{n-1}) \to (X, A, x_0)$ such that $[H(x_0, \cdot)] = \alpha$ and H(x, u) = x for every $u \in J^{n-1}$. They also showed that the following sequence

$$\cdots \longrightarrow G_n(A) \longrightarrow G_n^i(X,A) \longrightarrow G_n^{Rel}(X,A) \longrightarrow G_{n-1}(A) \longrightarrow \cdots$$

is exact if the inclusion $i: A \to X$ has a left homotopy inverse.

Jiang subgroups of the fundamental group play an important role in the fixed point theory. In this paper, we introduce the relative homotopy Jiang subgroup $G_n^{Rel}(f, x_0)$, show the exactness of the sequence of those groups for some topological pair (X, A) and investigate the effect of changing of base points on $G_n^{Rel}(f, x_0)$. We also show that $\bar{f}_*\pi_1(A, x_0)$ also operates trivially on the G-sequence of f for (X, A) and study the relationship between $G_n(\tilde{X}, \tilde{A})$ and $G_n(X, A)$, where (\tilde{X}, \tilde{A}) is a pair covering space of (X, A). Throughout this paper, $f: (X, A) \to (X, A)$ is a self-map of a pair of CW-complexes with A path connected and we will follow the notations and terminology of [5].

Received June 25, 1991.

Consider the class of continuous functions

$$F: X \times S^n \longrightarrow X$$

such that $F(x, s_0) = x$, where $x \in X$ and s_0 is a base point of S^n . Then the map $f : S^n \to X$ defined by $f(s) = F(x_0, s)$, where x_0 is a base point of X, represents an element $\alpha = [f] \in \pi_n(X, x_0)$.

DEFINITION. The set of all elements $\alpha \in \pi_n(X, x_0)$ obtained in the above manner from some F will be denoted by $G_n(X, x_0)$. Thus for every $\alpha \in G_n(X, x_0)$, there is at least one map $F: X \times S^n \to X$ which satisfies the above conditions such that $[f] = \alpha$. We say that F is an affiliated map to α [4].

Let (X, A) be a topological pair and $f: (X, A) \to (X, A)$ be a selfmap. We shall write $\overline{f}: A \to A$ for the restriction of f to A and $f_A: A \to X$ for the composition of \overline{f} and the inclusion $i: A \to X$. The initial (n-1)-face of I^n defined by $t_n = 0$ will be identified with I^{n-1} . The union of all remaining (n-1)-faces of I^n is denoted by J^{n-1} . Then we have $\partial I^n = I^{n-1} \cup J^{n-1}$.

DEFINITION 1. An element $\alpha \in \pi_n(X, A, f(x_0))$ is said to be in the relative homotopy Jiang subgroup $G_n^{Rel}(f, x_0)$ of f if there is a map H: $(X \times I^n, A \times \partial I^n) \to (X, A)$ such that $[H(x_0, \cdot)] = \alpha$ and H(x, u) = f(x) for every $u \in J^{n-1}$. We say that H is an affiliated map to α with respect to f and $H(x_0, \cdot)$ is the trace of H. We will abbreviate an affiliated map to α w.r.t. f to an affiliated map to α if no confusion arise.

Let X^X be the mapping space from X to itself with compact open topology, $A(X^X)$ be the subspace of X^X which consists of all maps $g \in X^X$ such that $g(A) \subset A$ and $[A^A]$ be the subspace of X^A which consists of all maps $g \in X^A$ such that $g(A) \subset A$. Consider the evaluation map $p: X^X \to X$ such that $p(g) = g(x_0)$, then p induces a homomorphism

$$p_*: \pi_n(X^X, A(X^X), f) \to \pi_n(X, A, f(x_0)).$$

It is easy to see that $p_*(\pi_n(X^X, A(X^X), f)) = G_n^{Rel}(f, x_0)$.

16

THEOREM 1. $G_n^{Rel}(f, x_0)$ is a subgroup of $\pi_n(X, A, f(x_0))$ for n > 1. *Proof.* Let $\alpha, \beta \in G_n^{Rel}(f, x_0)$. Then there exist affiliated maps H, G to α, β respectively. Define

$$F: (X \times I^n, A \times \partial I^n) \to (X, A)$$

by

$$F(x,t_1,\cdots,t_n) = \begin{cases} H(x,2t_1,\cdots,t_n), & 0 \le t_1 \le 1/2 \\ G(x,2t_1-1,\cdots,t_n), & 1/2 \le t_1 \le 1. \end{cases}$$

Then F is an affiliated map to $\alpha + \beta$ w.r.t. f. Define

$$K: (X \times I^n, A \times \partial I^n) \to (X, A)$$

by $K(x, t_1, \dots, t_n) = H(x, (1-t_1), \dots, t_n)$. Then K is an affiliated map to α^{-1} w.r.t. f.

An element $\alpha \in \pi_n(X, f(x_0))$ is said to be in the homotopy Jiang subgroup $G_n^{f_A}(X, A, x_0)$ of f w.r.t. A if there is a map $F: A \times S^n \to X$ such that $h(s) = F(x_0, s)$ is an element of α and $F(a, s_0) = f_A(a)$, where s_0 is a base point of S^n . An equivalent definition of $G_n^{f_A}(X, A, x_0)$ is the following : Define $p: X^A \to X$ by $p(g) = g(x_0)$; then p induces a homomophism $p_*: \pi_n(X^A, f_A) \to \pi_n(X, f(x_0))$. The $G_n^{f_A}(X, A, x_0)$ is the image of $\pi_n(X^A, f_A)$ under the homomorphism p_* . We will write $G_n^f(X, X, x_0)$ by $G_n(f, x_0)$ and also call the homotopy Jiang subgroup of f. If n = 1, then $G_1(f, x_0)$ is the Jiang subgroup J(f) of f [1]. In the usual sense, $G_n^{Rel}(f, x_0)$, viewed as a subgroup of $\pi_n(X, A, f(x_0))$, is independent of the base point in A. Let $\sigma: I \to A$ be a path such that $\sigma(0) = x_0$ and $\sigma(1) = x_1$. Then $f\sigma$ induces an isomomorphism $(f\sigma)_*: \pi_n(X, A, f(x_1)) \cong \pi_n(X, A, f(x_0))$ given by $(f\sigma)[g] = [g']$, where g' is homotopic to g by a homotopy $F: I^n \times I \to X$ that sends $\partial I^n \times I$ to A and satisfies $F(u,t) = f\sigma(1-t)$ for all $u \in J^{n-1}$ [7]. It is easy to show that $(f\sigma)_*: G_n^{Rel}(f, x_1) \cong G_n^{Rel}(f, x_0).$

Recall that the boundry operator $\partial : \pi_n(X, A, f(x_0)) \to \pi_{n-1}(A, f(x_0))$ is a map given by $\partial[g] = [g \mid_{I^{n-1}}] \in \pi_{n-1}(A, f(x_0))$. Let $(X, A, f(x_0))$ be any triplet. The inclusion maps $i : (A, f(x_0)) \to (X, f(x_0))$, j :

 $(X, f(x_0), f(x_0)) \rightarrow (X, A, f(x_0))$ induce homomorphisms i_* and j_* for each n > 0. Together with the boundary operator ∂ , they form a long exact sequence;

$$\xrightarrow{j_{\bullet}} \pi_{n+1}(X, A, f(x_0)) \xrightarrow{\partial} \pi_n(A, f(x_0)) \xrightarrow{i_{\bullet}} \pi_n(X, f(x_0)) \rightarrow$$
$$\cdots \xrightarrow{j_{\bullet}} \pi_2(X, A, f(x_0)) \xrightarrow{\partial} \pi_1(A, f(x_0)) \xrightarrow{i_{\bullet}} \pi_1(X, f(x_0))$$

which is called the homotopy exact sequence of a triplet $(X, A, f(x_0))$.

We can easily prove the following Lemmas by some modifications of Lemma 9,10,11 of [11].

LEMMA 1. ∂ carries $G_n^{Rel}(f, x_0)$ into $G_{n-1}(\overline{f}, x_0)$ for n > 2.

LEMMA 2. j_* carries $G_n^{f_A}(X, A, x_0)$ into $G_n^{Rel}(f, x_0)$.

LEMMA 3. If the inclusion $i: A \to X$ has a left homotopy inverse, then $i_*(G_n(\tilde{f}, x_0)) = i_*(\pi_n(A, f(x_0))) \cap G_n^{f_A}(X, A, x_0)$.

Consequently, we obtain a sequence for a selp-map $f:(X,A) \to (X,A)$

$$\longrightarrow G_{n+1}^{Rel}(f,x_0) \xrightarrow{\partial} G_n(\bar{f},x_0) \xrightarrow{i_{\star}} G_n^{f_A}(X,A,x_0) \xrightarrow{j_{\star}} G_n^{Rel}(f,x_0) \longrightarrow$$
$$\cdots \longrightarrow G_2^{Rel}(f,x_0) \xrightarrow{\partial} G_1(\bar{f},x_0) \xrightarrow{i_{\star}} G_1^{f_A}(X,A,x_0)$$

This sequence will be called the G-sequence of f for the pair (X, A). Is the G-sequence of f exact? It may not be true in general. But the G-sequence of f is exact for some pairs. The natural map $p: X^X \to X^A$ given by $p(g) = g_A$ is a fiber map [9]. Since $A(X^X) = p^{-1}([A^A])$,

$$p:\pi_n(X^X,A(X^X),f)\to\pi_n(X^A,[A^A],f_A)$$

is one to one fashion for n > 0. We have the following Theorem by modifications of Theorem 12 of [11].

THEOREM 2. If the inclusion $i: A \to X$ has a left homotopy inverse, then the G-sequence of f for (X, A) is exact.

Two maps $a_0, a_1 : (X, A) \to (Y, B)$ are given. If w is a path in B from $a_0(x_0)$ to $a_1(x_0)$, an w-homotopy from a_0 to a_1 is a homotopy $H : (X, A) \times I \to (Y, B)$ such that $H(x, 0) = a_0(x)$, $H(x, 1) = a_1(x)$, and $H(x_0, t) = w(t)$. If (X, A) has a nondegenerate base point, there is a map

 $h_{[\boldsymbol{w}]}:[X,A,x_0;Y,B,w(1)]\rightarrow [X,A,x_0;Y,B,w(0)]$

characterized by the property $h_{[w]}[a_1] = [a_0]$ if and only if a_0 is whomotopic to a_1 . If (X, A) is a suspension, the map is a homomorphism.

THEOREM[8]. For any pair (X, A) and any $n \ge 1$, there is a covariant functor from the fundamental groupoid of A to the category of pointed sets if n = 1 and the category of groups if n > 1 which assigns $\pi_n(X, A, x_0)$ to $x_0 \in A$ and to a path class [w] in A the map

$$h_{[w]}:\pi_n(X,A,w(1))\to\pi_n(X,A,w(0)).$$

In the way, $\pi_1(A, x_0)$ acts as a group of operators on the left on $\pi_n(X, A, x_0)$, and if A is path connected and $x_0, x_1 \in A$, then $\pi_n(X, A, x_0)$ and $\pi_n(X, A, x_1)$ are isomorphic by an isomorphism determined up to the action of $\pi_1(A, x_0)$.

Between $[(I^n, \partial I^n, J^{n-1}), (X, A, f(x_0))]$ and $[(B^n, S^{n-1}, s_0), (X, A, f(x_0))]$ there is a one-to-one correspondence. We will identify the corresponding elements.

LEMMA 4. There is an equivalent definition of definition $1 : \alpha \in G_n^{Rel}(f, x_0)$ iff there exists a map

$$F: (X \times B^n, A \times S^{n-1}) \to (X, A)$$

such that $[F(x_0, \cdot)] = \alpha$ and $F(x, s_0) = f(x)$ for some $\alpha \in \pi_n(X, A, f(x_0))$.

Proof. Let $\alpha \in G_n^{Rel}(f, x_0)$. Then there exists an affiliated map $G: (X \times I^n, A \times \partial I^n) \to (X, A)$ such that $[G(x_0, \cdot)] = \alpha$ and G(x, u) = f(x) for $u \in J^{n-1}$. Consider a homeomorphism $h: (B^n, S^{n-1}, s_0) \equiv$

 $(I^n, \partial I^n, z_0)$ and a homotopy equivalence $i: (I^n, \partial I^n, z_0) \rightarrow (I^n, \partial I^n, J^{n-1})$ where $z_0 = (0, 0, \dots, 0)$. Define $F: X \times B^n \rightarrow X$ by $F(x, u) = G(1 \times (ih))(x, u)$. Then $F(a, s) = G(a, ih(s)) \in A$ for $(a, s) \in A \times S^{n-1}$, $F(x, s_0) = G(x, ih(s_0)) = f(x)$. Thus $F: (X \times B^n, A \times S^{n-1}, x_0 \times s_0) \rightarrow (X, A, f(x_0))$ and $[F(x_0, \cdot)] = \alpha \circ i \circ h \equiv \alpha$ and $F(x, s_0) = G(x, ih(s_0)) = f(x)$.

Conversely, assume there exists a map $F: (X \times B^n, A \times S^{n-1}, x_0 \times s_0) \to (X, A, f(x_0))$ such that $[F(x_0, \cdot)] = \alpha$ and $F(x, s_0) = f(x)$. Define $H: X \times I^n \to X$ by $H(x, u) = F(1 \times (h^{-1}j))(x, u)$, where j is a homotopy inverse of i. Then $H(a, u) = F(a, h^{-1}j(u)) \in A$ for $(a, u) \in A \times \partial I^n$, $H(x, u) = F(x, h^{-1}j(u)) = f(x)$ for $u \in J^{n-1}$. Then we have $H: (X \times I^n, A \times \partial I^n) \to (X, A)$ and $[H(x_0, \cdot)] = [F(x_0, h^{-1}j)] = \alpha$ and $H(x, u) = F(x, h^{-1}j(u)) = f(x)$ for $u \in J^{n-1}$. Therefore H is an affiliated map to α w.r.t. f.

THEOREM 3. If $f, g: (X, A) \to (X, A)$ are homotopic maps, then $G_n^{Rel}(f, x_0)$ and $G_n^{Rel}(g, x_0)$ are isomorphic.

Proof. Let H be a homotopy from f to g. Then $\sigma(t) = H(x_0, t)$ is a path from $f(x_0)$ to $g(x_0)$. It is sufficient to show that

$$h_{[\sigma^{-1}]}(G_n^{Rel}(g,x_0)) \subseteq G_n^{Rel}(f,x_0).$$

Let $\alpha \in G_n^{Rel}(g, x_0)$. Then there exists an affiliated map $G: (X \times B^n, A \times S^{n-1}) \to (X, A)$ such that $[G(x_0, \cdot)] = \alpha$ and $G(\cdot, s_0) = g$ by the above Lemma . Define

$$\begin{split} \phi : & A \times S^{n-1} \times 0 \cup A \times s_0 \times I \to A \quad \text{by} \\ \phi(a, s, 0) &= G(a, s) \qquad \text{if} \ (a, s, 0) \in A \times S^{n-1} \times 0, \\ \phi(a, s_0, t) &= H(a, 1-t) \qquad \text{if} \ (a, s_0, t) \in A \times s_0 \times I. \end{split}$$

Then ϕ is well-defined and continuous. By the absolute homotopy extension property, there is an extension $\overline{\phi}: A \times S^{n-1} \times I \to A$. Define a map

$$\begin{split} \psi : & X \times B^n \times 0 \cup X \times s_0 \times I \cup A \times S^{n-1} \times I \to X \quad \text{by} \\ \psi(a,s,t) &= \bar{\phi}(a,s,t) & \text{if } (a,s,t) \in A \times S^{n-1} \times I, \\ \psi(x,u,0) &= G(x,u) & \text{if } (x,u,0) \in X \times B^n \times 0, \\ \psi(x,s_0,t) &= H(x,1-t) & \text{if } (x,s_0,t) \in X \times s_0 \times I. \end{split}$$

Then we have an extension $\bar{\psi}: X \times B^n \times I \to X$. Let $F(x, u) = \bar{\psi}(x, u, 1)$. Then $F(a, s) = \bar{\psi}(a, s, 1) = \bar{\phi}(a, s, 1) \in A$ for $(a, s) \in A \times S^{n-1}$. Thus we have $F: (X \times B^n, A \times S^{n-1}) \to (X, A)$. Since $F(x, s_0) = \bar{\psi}(x, s_0, 1) = H(x, 0) = f(x), [F(x_0, \cdot)] \in G_n^{Rel}(f, x_0)$ by Lemma 4.

Moreover we can take $\bar{\psi}(x_0,\cdot,\cdot):(B^n,S^{n-1})\times I\to (X,A)$ such that $\bar{\psi}(x_0,u,0)=\psi(x_0,u,0)=G(x_0,u),\ \bar{\psi}(x_0,u,1)=F(x_0,u).$ Therefore $h_{[\sigma^{-1}]}([G(x_0,\cdot)])=[F(x_0,\cdot)].$

COROLLARY 1. If $f,g: X \to X$ are homotopic, then $G_n(f,x_0)$ and $G_n(g,x_0)$ are isomorphic.

LEMMA 5. Given a map $f : (X, A) \to (X, A)$ and any two points $x_0, x_1 \in A$, there exists a map $g : (X, A) \to (X, A)$ which is homotopic to f and $\overline{f}^{-1}(x_0)$ and x_1 are in $g^{-1}(x_0)$.

Proof. For $\overline{f}: A \to A$ the restriction of f to A, there exists a map $\overline{g}: A \to A$ homotopic to \overline{f} such that $\overline{f}^{-1}(x_0)$ and x_1 are in $\overline{g}^{-1}(x_0)$, where the homotopy \overline{G} from \overline{f} to \overline{g} is an extension of $G: (A \times 0) \cup (T \times I) \to A$ defined by

$$G(x,t) = \begin{cases} \bar{f}(x) & \text{if } t = 0, \\ x_0 & \text{if } x \in \bar{f}^{-1}(x_0), \\ C(t) & \text{if } x = x_1, \end{cases}$$

where C is a path from $\bar{f}(x_1)$ to x_0 and $T = \bar{f}^{-1}(x_0) \cup x_1$.[1] Define $H: X \times 0 \cup A \times I \to X$ by

$$H(x,0) = f(x)$$
 for $(x,0) \in X \times 0$,
 $H(a,t) = \overline{G}(a,t)$ for $(a,t) \in A \times I$.

Then H is well-defined and continuous. By the homotopy extension property, there is an extension $\overline{H}: X \times I \to X$ of H. Let $g(x) = \overline{H}(x, 1)$. Then g is an extension of \overline{g} , $g(x) = x_0$ for $x \in \overline{f}^{-1}(x_0)$ and $g(x_1) = x_0$.

Lemma 5 implies that, given $f: (X, A, x_0) \to (X, A, f(x_0))$, there is a map $g: (X, A, x_0) \to (X, A, x_0)$ homotopic to f. Theorem 3 and Lemma 5 permit us to assume that the base point $x_0 \in X$, that we choose, is a fixed point of the map with which we are working.

THEOREM 4. For any map $f: (X, A) \to (X, A)$, $G_n^{Rel}(X, A, x_0) \subseteq G_n^{Rel}(f, x_0)$.

Proof. Let $\alpha \in G_n^{Rel}(X, A, x_0)$. Then there exists an affiliated map $H: (X \times I^n, A \times \partial I^n, x_0 \times J^{n-1}) \to (X, A, x_0)$ such that $[H(x_0, \cdot)] = \alpha$ and $H(x, J^{n-1}) = x$. Define $H': (X \times I^n, A \times \partial I^n) \to (X, A)$ by H'(x,t) = H(f(x),t). Then, it follows that $[H'(x_0, \cdot)] = [H(f(x_0), \cdot)] = \alpha$ and H'(x, u) = H(f(x), u) = f(x) for any $u \in J^{n-1}$. Thus $\alpha \in G_n^{Rel}(f, x_0)$.

COROLLARY 2. For any map $f: X \to X$, $G_n(X) \subseteq G_n(f)$.

In particular, if n = 1, then we have

COROLLARY 3. For any map $f: X \to X$,

 $J(X) \subseteq J(f)$

where J(X) is the Jiang subgroup of the identity map.

THEOREM 5. $(\bar{f})_*\pi_1(A, x_0)$ operates trivially on the G-sequence of f for (X, A).

Proof. In diagrammatic terms, theorem means that, for each $\eta = i_*(\xi)$ where $\xi = (\bar{f})_*([\sigma])$ and $[\sigma] \in \pi_1(A, x_0)$, all vertical maps in the following diagram are the identity maps :

this theorem can be proved by modifications of Theorem 2 in [10].

We will investigate the relationship between $G_n(X, A)$ and $G_n(\tilde{X}, \tilde{A})$ for the covering spaces \tilde{X} and \tilde{A} .

DEFINITION 2. A map $p : (\tilde{X}, \tilde{A}) \to (X, A)$ is a pair covering of (X, A) if $p : \tilde{X} \to X$ and $p \mid_{\tilde{A}} : \tilde{A} \to A$ are covering maps.

22

THEOREM 6. Let $p: (\tilde{X}, \tilde{A}) \to (X, A)$ be a pair covering of (X, A). If $p_*(\alpha) \in G_1(X, A)$, then $\alpha \in G_1(\tilde{X}, \tilde{A})$.

Proof. Since $p_*(\alpha) \in G_1(X, A)$, there exists an affiliated map $\phi : A \times S^1 \to X$ to $p_*(\alpha)$ such that the closed path $\sigma : t \longmapsto H(x_0, t)$ represents $p_*(\alpha)$, where H is the composition of $(1 \times q)$ and ϕ , $q : I \to S^1$ given by $q(t) = e^{2\pi i t}$. By the homotopy extension property, there exists a homotopy extension $\tilde{H} : \tilde{A} \times I \to \tilde{X}$ of $H(p|_{\tilde{A}} \times 1)$ such that $p\tilde{H} = H(p|_{\tilde{A}} \times 1)$ and $\tilde{H}(\tilde{x}, 0) = i(\tilde{x})$, where $i : \tilde{A} \times 0 \to \tilde{X}$ is the inclusion map. Let $\tilde{\sigma}(t) = \tilde{H}(\tilde{x}_0, t)$, then $\tilde{\sigma}$ is a lifting of σ , where \tilde{x}_0 is a base point of \tilde{X} such that $p(\tilde{x}_0) = x_0$. By the Monodromy Theorem, $[\tilde{\sigma}] = \alpha \in \pi_1(\tilde{X}, \tilde{x}_0)$. Therefore we see that $\tilde{\phi} = \tilde{H}(1 \times q)^{-1}$ is an affiliated map to α w.r.t. A because q is an identification.

THEOREM 7. Let $p: (\tilde{X}, \tilde{A}) \to (X, A)$ be a pair covering of (X, A). If n > 1, then $p_*^{-1}(G_n(X, A)) \subseteq G_n(\tilde{X}, \tilde{A})$. In other words, if we identify $\pi_n(X)$ with $\pi_n(\tilde{X})$ under the isomorphism, then $G_n(\tilde{X}, \tilde{A}) \supseteq G_n(X, A)$.

Proof. Let $\alpha \in G_n(X, A)$. Then there exists an affiliated map $\phi : A \times S^n \to X$ to α such that $\phi(\cdot, s_0) = i : A \to X$. Since $\phi_*(p|_{\tilde{A}} \times 1)_*[\pi_1(\tilde{A} \times S^n)] \subseteq p_*\pi_1(\tilde{X})$ where $\tilde{x_0}$ is a base point of \tilde{X} such that $p(\tilde{x_0}) = x_0$, there exists a lifting $\tilde{\phi} : \tilde{A} \times S^n \to \tilde{X}$ of ϕ such that $p\tilde{\phi} = \phi(p|_{\tilde{A}}) \times 1$).

Now $\tilde{\phi} \mid_{\tilde{A}} = i_{\tilde{A}}$ (as $\tilde{\phi}(\tilde{x}_0, s_0) = \tilde{x}_0$) and $\tilde{\phi} \mid_{S^n}$ represents $p_*^{-1}(\alpha)$ (as $p\tilde{\phi} \mid_{S^n} = \phi(p \times 1) \mid_{S^n} = \phi \mid_{S^n} = \alpha$). Thus $p_*^{-1}(\alpha) \in G_n(\tilde{X}, \tilde{A})$.

References

- R. F. Brown, The Lefschetz Fixed Point Theorem., Scott Foresman and Co. Glenview.IL., 1971.
- D. H. Gottlieb, A certain subgroup of the fundamental groups, Amer. J. Math. 87 (1965), 840-856.
- 3. _____, On fiber space and the evaluation map, Annals of Math. 87 (1968), 42-55.
- 4. _____, Evaluation subgroups of homotopy groups, Amer. J. Math. 91 (1968), 729-756.
- 5. B. Gray, Homotopy theory, Academic press, New York, 1975.
- 6. S. T. Hu, Homotopy theory, Academic press, New York, 1959.

- 7. C. R. F.Maunder, Algebraic topology, Van Norstrand Reinhold company, London, 1970.
- 8. E. H. Spanier, Algebraic topology, McGraw Hill, New York, 1966.
- 9. Moo Ha Woo and Jae Ryoung Kim, Certain subgroups of homotopy groups, J. Korean Math. Soc. 21 (1984), 109-120.
- 10. Moo Ha Woo, The operations of the fundamental Group on the G-sequence, J. Edu. Korea Univ. 14 (1989).
- 11. Moo Ha Woo and Kee Young Lee, On the relative evaluation subgroups of a CW-pair, J. Korean Math. Soc. 21 (1988), 149-160.

Department of Mathematics Education Korea University Seoul 136–701, Korea