A Robustness of Hierarchic Element Formulated by Integrals of Legendre Polynomial

적분형 르장드르 함수에 의한 계층요소(階層要素)의 통용성(通用性)

  • 우광성 (전남대학교 토목공학과)
  • Received : 1991.09.27
  • Published : 1992.03.31

Abstract

The purpose of this study is to ascertain the robustness of p-version model with hierarchic intergrals of Legendre shape functions in various applications including plane stress/strain, axisymmetric and shell problems. The most important symptoms of accuracy failure in modern finite elements are spurious mechanisms and a phenomenon known as locking which are exhibited for incompressible materials and irregular shapes which contain aspect ratios(R/t, a/b), tapered ratio(d/b), and skewness. The condition numbers and energy norms are used to estimate numerical errors, convergence characteristics and algorithmic efficiencies for verifying the aforementioned symptoms of accuracy failure. Numerical results from p-version models are compared with those from NASTRAN, SAP90, and Cheung's hybrid elements.

본(本) 연구의 목적(目的)은 평면응력/변형과 축대칭 및 쉘문제를 포함하는 다양한 응용문제에서 계층적(階層的) 성질을 갖는 적분형 르장드르 형상함수에 의한 P-version 모델의 통용성(通用性)을 확인하는 것이다. 현대 유한요소 해석에서 정확도를 확보하지 못하는 가장 큰 이유는 비(非)압축성 재료와 망목(網目)설계시 요소의 형상비(形狀比), 사다리꼴 요소에서 변(邊)의 감소비(減少比)와 평행사변형 요소의 왜곡도(歪曲度) 등을 갖는 불규칙 형상에서 나타나는 가상메카니즘과 Locking 현상이다. 조건수(條件數)와 에너지 노름이 계산오차, 수렴성 및 알고리즘의 효율성을 검증하는데 사용되었으며 해석결과는 NASTRAN과 SAP90 및 Cheung이 제안한 Hybrid 요소와 비교되었다. NASTRAN을 제외한 SAP90 및 P-version 프로그램은 16 Bit 소형컴퓨터에 의해 실행되었다.

Keywords