The J. of MIS

Research 103
Vol.2, No.2, Dec 1992

ARG Holel ol AAE A%
dloje) Zed) B A7

A Study on Date Modeling for Object-Oriented Database Design

Obgct-Oriented method 1s a rather difficult one, theories are different as many as
they are, and can hardly be found well-applied exam ples of OOD.

So, this paper deal with the history, the needs, the benefits, basic concept of object-
oriented design methods, especially the designing procedure which covers from
analyzing the requirements, designing the EER(extended entity relationship) model,
transforming this model into relational schema, to OODB schema step.

Major contributions can be identified; First, the proposed method will ensure that it
improve the productivity, increase the software quality, and elevate the maintainability.
Second, it provide the framework of how object-oriented schema is comstructed for
OODB design. Third, suggested realistic case study will enhance the better
understanding of how the current business process will be applied to the OODB design
step.

to the amount of information being stored and

| . Introduction

The past decade has seen a rapid growth in
database systems, not only with respect to the

number of such systems, but also with regard

the complexity of applications being deve-
loped. This growing demand for systems of
ever-increasing complexity and precision has

stimulated the need for higher level concepts,

MCEE RS

104

tools and techniques for database design and
Thus the database design

methodologies which have been developed in

development.

recent years proyjded the designer with the
means for modeliﬁg an enterprise at a high
level of abstraction, before proceeding with
the detailed logical and physical database
design.

This study 1s aimed at the practicing
database designer, the person who has to
tackle real-world systems development pro-
jects every day. | assume that readers are
concerned with the “middle” part of the
development cycle ! the activity of design. A
designer may also be involved in the front-
end activities of interviewing users to
determine system requirements, as well as
being involved in the back-end issues of
system testing.

In this study, I am speaking primarily to the
person responsible for designing overall data-
base architecture by suggesting the objeci-

oriented data modeling techniques.

1. Changes of Software
Engineering Environments

During the past decade, there has occurred
a lot of changes in the software engineering
environments. Among many, I'll explain four
major changes in the light of history of object
With this,

understand more easily why object-orientd

-oriented approach. you'll

concept has appeared.

1.1 Attention has gradually shifted from

issues of coding to issues of design and

analysis.

1.2 It was difficult to think about coding in
object-oriented fashion when the language of
choice was COBOL or plain-vanilla C; it has

become easier with C++ and Smalltalk.

1.3 The systems built today are different
from what they were ten or twenty years
ago:they are larger, more complex, and more
volatile. An object-oriented approach to
analysis and design is likely to lead to a more
stable system. Also, today’s on-line, inter-
active systems devote much more attention to
the user interface than the text-oriented
batch processsing systems of the 1970s. An
object~oriented approach to such systems—
from analysis through design and into coding
—Is more natural way of dealing with such

user-oriented systems.

1.4 The systems built today are more
“domain-oriented” than the systems bulit in
the 1970s and 1980s. Functional complexity is
less of a concern than it was before : model-
ing the data has become a moderate priority;
modeling problem domain understanding and

systems responsibilities take higher priority.

2. The Needs and Objectives of
Object-Oriented Design

2.1 There may be many advantages or
objectives In case we adopt the object-
oriented concept Into organizations according

to various theories. The first objectives of

00D are to improve productivity; OOD focu-
ses effort on the up-front activity of software
design, In return for this investment, less time
18 required for testing and defect removal. But
the overall productivity improvement during
the development of a system may be a modest
20 percent, or even less if the project team 1s
relatively unfamiliar with OOD.

But there 13 another perspective ! instead of
Improving just the productivity of develop-
ment, how about improving productivity ac-
ross the entire hife cycle! Most organizations
recognize that 75 to 80 percent of a system’s
cost occurs after 1t has been deployed; this
also means that many of the defects are
discovered after deployment, and even more
important, much of the functionality of the
system is added after initial deployment.

Another 1s to increase software quality.
Software quality will take on a new meaning
in the 1990s, especially as the worldwide
software industry becomes more competitive.
As ‘hard’ defects in a software system f{all
below some threshold, end-users equate
‘quality’ with more than just the absence of
defects. Software quality —fitness for use—
begins to include ease of use, portability, and
ease of modification. Thus, maintainability
and the ability of a system to deal with
continual change, will become more important
aspects of software quality in the future.

Finally, the other }nay be to elevate main-
tainability. The requirements for a system will
always be in a state of flux. Management
may impose an artificial freezing of require-

ments at a particular point in time. But the

105

true requirements, the needed system, will
continue to evolve. Many forces affect this
ever-changing requirements set . clients, com-
petition, regulators, approvers, and techno-
logists.

A designer endeavors to organize a design
so that it is resilient to change; a packaging

that will remain stable over time is sought.

2.2 Above all, the key objectives of Q0D are
improving productivity, increasing quality,
and elevation maintamability; the organiza-
tion may be able to reduce the number of
people assigned to pure maintenance work,
improve productivity or quality by providing a
practical mechanism to reuse ‘classes’ from
one project to another based upon a ‘class
library’. And also OOD make it easier for us
to add, extend, change, delete or reuse some

parts of systems whenever need them.

3. Motivations and Benefits of
Object-Oriented

The motivations and benefits of object-

oriented design are,

3.1 In the view of technical field;

We can tackle more challenging problem
domains, it Improves interactions between the
problem~domain-expert and designer, it expli-
citly represent the commonality, it’s resilient
to change, and also we can reuse analyzed or

designed results.

3.2 The other one we can consider is In the

view of manager’s side.

106

effort

(man months)

size of functionality

effort

{(man months)

size of functionality

Figure 1.
(with conventional method)

Figure 1 illustrates the exponential time
needed to develop a system(in terms of labor
months) as a function of size or functionality.
Using these object-oriented concepts in
languages, databases, and use-interfaces, we
will eventually be able to achieve a linear
expansion 1n effort as a function of size or
functionality[Setrag, 1990]. This is illustrated
in figure 2 which shows that there is an initial
rise In cost while learning the object—oriented
technology and developing initial reusable
components or class hierarchies, but later a
more linear growth of effort is achieved

[Setrag, 1990].

. Object-Oriented Date
Modeling

1. Conventional vs Object-
Oriented

Traditional systems development methodo-
logies view an information system from two
separate perspectives, the data perspective
and the process perspective. The data perspec-

tive is concerned with entity-relationship

Figure 2.
{with object-oriented method)

modelling, relational analysis, and ultimately
database schema generation and the physical
implementation of the database. The process
perspective 1s concerned with the functional
requirements of the system and involves
data flow diagrams,

at the

business activities,

system functions and, low end,
compilable units of program code(modules).
In traditional tools for computer-aided
software engineering(CASE tools) a data
dictionary serves to integrate these two
perspectives and maintain consistency(Figure
3)

In an object-oriented perspective(Figure
4), the principle of aggregation is centred on
the underlying data abstractions. That is,
every function must be associated with a
particular object, and thus functions - are
grouped together if they operate on the same
objects

data abstraction. In this way,

encapsulate both state and behaviour.
Functions which are constituents of a higher
level process may reside in different objects
and a sequence of messages (or function
calls) between objects is necessary to perform

a higher level process.

107

Data Perspective
+ anialysing data requirémerits

.+ entity-relationship modelling -

Process Perspective
- analysing system activities

- +data flow analysis

+ relational analysis

» database schema generation

T

» specifying system functions

» developing program modules

/

Data Dictionary
» information repository

+ Consistency preservation

Figure 3. Conventional structured analysis

« Implementing the objects

Object-Oriented Perspective

+ Identifying entities/objects and their attributes
+ Identifying the functions to be applied to each object

+ Establishing the interface each object presents to other objects

Figure 4. Object-oriented analysis

Because of the difference in aggregation
principles, proceeding from a traditional struc-
tured analysis approach to an object-oriented
design can be awkward. This can be avoided
by adopting an object-oriented viewpoint
during the analysis phase.

We find the object modeling techniques
(OMT) is useful to model a system from three
related but different viewpoints, each cap-
turing ‘important aspects of the system, but all

required for a complete description.

The Object Modeling Techmque(OMT) is
our name for the methodology that combines
these three views of modeling systems. The
object model represents the static, structural,
“data” aspects of a system. The dynamic
model represents the temporal, behavioral,
“control” aspects of a system. The functional
model represents the transformational, “fun-
ction” aspects of a system. A typical software
procedure incorporates all three aspects: It

uses data structures{object model), it sequ-

108

ences operations In time (dynamic model),
and 1t transforms values(functional model).
Each model contains references to entities in
other models. For example, operations are
attached to objects in the object model but

more fully expanded in the functional model.

2. Object-Oriented System

There are some basics and principles of
OOA that we should know before we enter
into the object-oriented data modeling or
database design. These are terminology, merg-
ing of disciplines, mapping, and the principles
of managing complexity. The termnology
“Object-Oriented” is difficult term, because
the term “object” has been used in different
ways within two very different disciplnes :

+ From Information Modeling, meaning a re-

presentation of some real-world thing, and
some number of occurrences of that thing.

+ From Object-Oriented Programming Lan-
guages, meaning a runtime instance of
some processing and values, defined by a
static description called a “class”.

An equation for recognizing an object-

oriented approach is :

Object-Oriented =Classes and Objects
+ Inhqritance
+ Communication

with messages

OOA builds upon the best concepts from in-
formation- Modeling, Object-Oriented Pro-
gramming Languages, and Knowledge-Based
Systems—the concepts which have a solid
basis in underlying principles for managing

complexity.

Entity- Semantic
Relationship > Data
Diagrams Modeling

- Attributes
— - Instance connections

- Generalization-Specialization

« Whole-Part

(information Modeling)

Object-
Oriented

Analysis

Object-Oriented
Programming Languages &

Knowledge-Based Systems

- Attributes and Exclusive Services
- Communication with Message
- Generalization-Specialization

- Inheritance

Figure 5. Merging of disciplines

From Information Modeling come construc-
ts analogous to Attributes, Instance Connecti-
ons, Generalization-Specialization, and Whole
-Part. From Object-Oriented Programming
Languages and Knowledge-Based Systems
come the encapsulation of Attributes and
exclusive Services, communication with mess-
ages, Generalization-Specialization and Inher-
ltance.

OOA directly maps problem domain and
system responsibility directly into a model.
Instead of an indirect mapping from problem
domain to flows and bubbles, the mapping is
direct, from the problem domain to the model.

The last one 1s that OOA is not very helpful

109

for systems with very limited responsibilities,
or for systems with only one or two Class- &
-Objects. For example, if a system takes an
input stream, runs a ten page algorithm on 1it,
and produces an output stream, then just a
flow chart, a list of equations, and some terse
text would be sufficient. The system’s respon-
sibilities are very limited.

Figure 6 shows that your understanding the
concepts of the principles for managing com-
plexity, compared with the analysis methods
or O0OA construct, will guide you easily to the
object-oriented database schema designing

step.

1 Abstraction

a Procedural
b Data
Encapsulation
Inheritance

Assocliation

DD Ul o WD

b Whole and parts

7 Scale

8 Categories of behavior

Communication with messages
Pervading methods of organization

a Objects and attributes

c Classes and Members, and distinguishing between them

a Immediate causation

b Change over time

c Similarity of functions

Figure 6. Principles for managing complexity

(with reference numbers, used in the tables which follow)

110

This table(figure 7) presents the differe-

nces between the various analysis methods,

assessed in the light of principles for mana-

ging complexity :

Principles of Managing Complexity

Methods la|lb| 2 | 3|4 |5 |6a|6b|6c] 7 |8 |8b]8
Functional
Decomposition X
Data Flow X X | X
Information Modeling X X[X]| X | X
Object-Oriented XXX [X[X|X|X[X}X|X[X]X]|X

Figure 7. Analysis methods and the principles they incorporate

The purpose I quoted the relation between
0O0OA methods-or-constructs and each prin-
ciples of managing complexity is for your
easier understanding OOD. Thirteen factors
can be fully explained and applied in the light
of object-oriented analysis. For example, in
the information modeling method, abstraction
(1a,1b),inheritance(3), and message commu-
nication(5) can not be apphed yet, although

these are most powerful concepts in OOD.

The following table(Figure 8) summarizes
the OOA constructs which utilize these prin-
ciples :

This table is not for explanation of what the
OOA-construct contribute to principles of
managing complexity, but just for your better
understanding the concept and the relation-
ship between them.

In an overall approach, OOA consists of

five major activities.

Principles of Managing Complexity

00A Construct lajlb| 2|34]| 5 |6a|6bl6c| 7 |8 8|8
Class- & -Object X | X X
Gen-Spec Structure X X
Whole—Part‘Structure X
Attribute XX |X X X
Service [X[X]X]|X X XX | X
Instance Connection X
Message Connection X X X
Subject X X

Figure 8. OOA’s application of principles for managing complexity

Finding Class- & -Object
Identifying Structures
Identifying Subjects
Defining Attributes

Defining Services

These are indeed activities, not sequential
steps. The activities guide the analyst from
high levels of abstraction{e.g., problem-do-
main Class- & -Objects) to increasingly lower
levels of abstraction(Structures, Attributes,
and Services). And the ordering of these five
activities represents the most common overall
approach. But, In this study, let alone the
approach to OOA methodology, I'll directly
touch the Object-Oriented data modeling with

case study “Hospital Database”.

3. Case Study

Now, in this section, I'll show you how to
design both relational and object-oriented
database schema. With the hospital business
systems, analyzing the requirements, design-
ing the EER(extended entity relationship)
model, transforming this model into relational
schema, and finally we can obtaiti the object-

. oriented database schema.
3.1 Requirements analysis

A requirements analysis yields the follow-
ing informal description of the information to
be recorded

The patients occupying each ward

111

Most patients are assigned to a Ward on
admittance and each ward may contain many
patients., However, consultants(senior surge-
ons)at the hospital may have private patients
who are assigned to private rooms, each of
which has a unique identification number. The
information to be recorded about a patient
upon registration at the hospital includes a
unique patient number, name, address, sex,

phone number, date of birth and blood group.

The nurses assigned to each ward

A nurse may or may not be assigned to a
ward and he,/she cannot be assigned to more
than one ward. A ward may have many
nurses assigned to it. Nurses are identified by
their staff numbers and their names, add-
resses, phone numbers and grades are also
recorded. Each ward has a unique number
and 1s dedicated to a particular type of
patient(e.g. geriatric, pediatric, maternity,

etc.).

The operations undergone by patients

A patient may have a number of opera-
tions. The information to be recorded about
an operation includes the type of operation,
the patient, the surgeons involved, date, time

and location.

The surgeons who perform operations

Only one surgeon may perform an opera-
tion, any other surgeons present being con-
sidered as assisting at the operation. Surgeons
come under the direction of senior surgeons,
called consultants, who may also perform or

assist at operations. Information recorded

112

about a surgeon includes name, address and

phone number. Each consultant has a

specialism.

The theatres in which operations are per-
formed

An operation can be performed in only one
theatre but a given theatre may be the
location of many operations. Each theatre has
an identifying number and some may be
specially equipped for certain classes of

operation.

The nurses assigned to each theatre

A nurse may or may not be assigned to a
theatre and he/she cannot be assigned to
more than one theatre. A theatre may have

many nurses assigned to it.

3.2 The entity-relationship model

The following 1s a list entities, attributes
and relationships which represent the informal
description of the database outlined above
[Tim & John, 1990];

» Entity type SURGEON, with attributes
NAME, ADDRESS and PHONE-NO.

« Entity type CONSULTANT which is a sub-
type of the entity type SURGEON. Every
consultant 1s a specialist in a particular
branch of surgery and this is recorded as
an additional attribute SPECIALITY.

» Entity type PATIENT, with attributes
PATIENT# (a unique patient number),
NAME, ADDRESS, PHONE-NO, DATE-
OF-BIRTH, SEX and BLOOD-GROUP.

+ Entity type PRIVATE-PATIENT which is

a subtype of the entity type PATIENT. The
number of the private room to which such a
patient is assigned is recorded as an
additional attribute, ROOM #.

Entity type NURSE, with attributes STAFF
(a unique stafl number), NAME, ADD-
RESS, PHONE-NO, SEX and GRADE. A

nurse may be assigned either to a ward a

theatre.

Entity type WARD, with attributes WARD

(a unique ward number), WARD-TYPE

and NO-OF-BEDS.

. Entity type THEATRE, with attributes
WARD# (a unique theatre number) and
THEATRE-TYPE.

. Entity type THEATRE, with attributes
OPERATION-TYPE, DATE and TIME.

extracted

Appropriate relationships, as
from the requirements analysis, are as given
in the following list :
PERFORMS, a 1: N relationship between
entity types SURGEON and OPERATION,
with the entity type OPERATION being a
mandatory member of this relationship, 1.e.
every operation must be performed by a

surgeon.

ASSISTS, an N : M relationship between
entity types SURGEON and OPERATION
indicating those surgeons who assist at each
operation. A possible attribute of this
relationship is the ROLE played by each

surgeon.

SUPERVISES, a 1 : N relationship betwe-
en the entity types CONSULTANT and
SURGEON. The membership class of SUR-

GEON in this relationship is optional since
there may be surgeons(e.g.consultants) that

are not supervised.

TREATS, a 1 : N relationship between the
entity type CONSULTANT and the subtype
PRIVATE-PATIENT. The membership
of PRIVATE-PATIENT in this

relationship is mandatory. That is, every

class

private patient is assigned to a consultant

for treatment.

UNDERGOES, a 1 : N relationship between
entity types PATIENT and OPERATION.
OPERATION 1s a

mandatory member of this relationship

The entity type

since an operation must always have an

assoclated patient.

OCCUPIES, a 1:N relationship between
entity types WARD and PATIENT, where
the: membership class of PATIENT 18
‘almost’ mandatory since most patients are

assigned to a ward on entry to the hospital.

LOCATED, a 1:N relationship between
entity types THEATRE and OPERATION.
The entity type OPERATION is a manda-
tory member of this relationship since

clearly every operation must be located in a
theatre.

WARD-ASSIGN, a 1 :N relationship be-
tween entity types WARD and NURSE. A
possible attribute for this relationship is
DATE-ASSIGNED giving the date on
which a particular nurse was assigned to a

ward. The NURSE entity type is an

113

optional member of this relationship since a
nurse may or may not be assigned to a

ward at any given time.

THEATRE-ASSIGN, a 1 : N optional rela-

tionship between THEATRE and NURSE,

with attribute DATE-ASSIGNED giving
the date on which a particular nurse was
assigned to a theatre. As Is the case with

WARD-ASSIGN, the NURSE entity type is

an optional member of this relationship

since a nurse may or may not be assigned
to a theatre at any given time.

In addition to the above relationships, we
have an IS A relationship between the
subtype CONSULTANT and the entity type
SURGEON, and another between the subtype
PRIVATE-PATIENT and the entity type
PATIENT. A schematic EER model for the
hospital application is illustrated in Figure 9
[Fim & John, 1990].

3.3 The relational schema

After applying the guidelines(Converting
an EER model into a relational schema), we
abtained the following normalized relatioal
schema.

In the relaticnal schema the relationship
QCCUPIES is represented by the foreign key
WARD # in the PATIENT relation since this
relationship is “almost mandatory” for
PATIENT. That is, most patients are assigned
to wards. The relationship TREATS is
represenited by the foreign key SNAME(the

name of the consultant)in the PRIVATE-

114

N

M

Figure 9. EER model for the hospital database

115

RELATIOAL SCHEMA

SURGEON (SNAME, ADDRESS, PHONE-NO)

CONSULTANT(SNAME, SPECIALITY)

PATIENT(PATIENT #, WARD#, PNAME, ADDRESS, PHONE-NO,
DATE-OF-BIRTH, SEX, BLOOD-GROUP)

PRIVATE-PATIENT(PATIENT #, SNAME, ROOM)

NURSE(STAFF #, NNAME, ADDRESS, PHONE-NO, SEX GRADE)

THEATRE(THEATRE#, THEATRE-TYPE)

OPERATION(OP#, SNAME, THEATRE#, PATIENT #, OP-TYPE, DATE, TIME)

ASSISTS(OP #, SNAME, ROLE)

SUPERVISES(SURGEON-SNAME, CONSULTANT-SNAME)

WARD-ASSIGN(STAFF £, WARD#, DATE-ASSIGNED)
THEATRE-ASSIGN(STAFF #, THEATRE#, DATE-ASSIGNED)

PATIENT relation. Also, the foreign keys
SNAME, PATIENT® and THEATRE# in
the ~ OPERATION represent
respectively the PERFORMS, UNDERGOES
LOCATED relationships of which
OPERATION is a mandatory member.,

The M N relationship ASSISTS Is
represented by a separate relation scheme
containing the key attributes of SURGEON
and OPERATION, together with the attribute
ROLE which indicates the role played by a

relation

and

surgeon at an operation.

The optional 1: N relationships WARD-
ASSIGN and THEATRE-ASSIGN are each
represented by a separate relation scheme
contalning the key attributes of the
participating entity sets together with the
additional attribute DATE-ASSIGNED. If the

majority of nurses were assigned to wards we

might choose to WARD-
ASSIGN relationship by posting the foreign
key WARD# into the NURSES relation
with the DATE-
ASSIGNED).

The optional 1. N relationship SUPER-

VISES is represented by a separate relation,

represent the

(together attribute

but could be represented by posting the name

of the supervising consultant{C-SNAME)

into the SURGEON relation, as follows :

SURGEON(SNAME, SADDRESS, PHONE-
NO, C-SNAME)

The attribute C-SNAME in this case will be

null for all those surgeons who do not come

under the direction of a consultant.

3.4 The object-oriented schema

The ohject-oriented database -schema is a

116

set of class definitions, one for each entity in
the EER model. Relationships are typically
represented by properties(or operations)
rather than separate classes, unless the
relationship itself has attributes(apart from
those of the participating entities). In this
case a class may be constructed for the
relationship, For the hospital database the
ASSISTS
between SURGEON and OPERATION is

probably best incorporated in the class for

many-to-many relationship

surgeon.

Once again 1t is important to note that all
the information associated with a particular
entity is represented in the class definition,
rather than being scattered across several
relations. For example, in the class Surgeon
we have represented not only the simple
properties of surgeons{name, address, phone
number)but also the supervising consultant
and the operations the surgeon has performed
and assisted at.

An abstract data type(ADT) defines a
class of objects as follows with which you
may understand how the object-oriented

database schema is constructed.

class Surgeon
properties
name, address, phone _no ! String
sex . (Male, Female);
supervised__by : Consultant
inverse is Consultant.supervises;
performs . Set(Operation)
inverse is

Operation.performed by,

assists__at . Set(Operation)
inverse is Operation.assisted_ by,
opérations
create{...);
assign__duties(...);
role(Surgeon, Operation)— RoleType;

end Surgeon.

class Consultant
inherit Surgeon
. properties
supervise . Set(Surgeon)
inverse is Surgeon.supervised by
treats . Set(Private_ Patient)
~ inverse is
Private Patient.treated__by,
operations
create(...);
calculate fees(hours,...);

end Consultant.

class Patient
properties

number : Interger,
name, address, phone_ no : String;

sex . (Male, Female);
date _of _birth : Date;
blood group : Blood_ Type;
on_ ward | Ward
inverse is Ward.patients;
undergoes . Set{Operation)
inverse is
Operation.performed-on,
operations
create(...);

admit(...);

discharge(...);

end Patient.

class Patiente Patient
inherit Patient
properties
room# : Integer;
insurance . InsuranceType;
treated by : Consultant
inverse is
Consultant.treats;
operations
create(...);

calculate charges(...);

end Private Patient.

class Ward
properties
ward# : Integer;
no_of beds: Integer;
occupancy . Integer;
type . (Gerlatric, Pediatric,
Maternity,...) ;
patients . Set(Patient)
nverse is Patient.on _ward;
nurses . Set(Nurse)
inverse is Nurse.ward-assign;
operations
create(...);
end Ward.

class Operation
properties
date : date;

117

type . OperationType;
performed on : Patient

inverse 1s Patient.operations;
performed by ! Surgeon

inverse is Surgeon.performs;
assisted by : Set(Surgeon)

mverse 1s Surgeon.assists_at;
located in ! Theatre

inverse 1s Theatre.holds;

operations

create(...);
schedule(...);

cancel(...);

end Operation.

class Nurse
properties
staff £,
String;

name, address, phonet :
sex . (Male, Female);
grade : (Student, SEN, SRN,...);
ward _assign . Ward
Inverse 1s Ward.nurses;
theatre assign . Theatre
inverse 1s Theatre.nurses,
operations

create(...);

end Nurse.

class Theatre
properties
theatre#t : Integer;
type . TheatreType;

nurses . Set(Nurse)

118

inverse is Nurse.theatre _assign;
holds : Set(Operation)

inverse is Operation.located__in;

operations

create(...);

end Theatre

Although 1t 1s possible to implement ADTs
In a language that provides no special support
for them, 1t 1s more convenient if an abstract
type can be implemented as a single program
module. In object-oriented languages an ADT
Is implemented via such a module, which is
usually called a class. For example, in C++ a
class definition takes the following form :

class name
{
private :
private components
public :
public components

b

II. Conclusion

Object-oriented system design is primarily
based upon data abstraction(class- & -obje-
ct), inheritance, and message communication.

In this study, I showed the relationship be-
tween data abstraction(entity) and object-

oriented database design. I also showed that

the extended entity relationship(EER) appro-
ach, which include the notions of generali-
zation and subtyping, is a valuable first step
towards an object-oriented data model.

First, In the object-oriented perspective
every operation on the database must be
associated with a particular object. Thus
functions are grouped together if they operate
on the same data abstraction. In this way,
objects encapsulate both state and behaviour
(Data type).

Second, The relational model is incapable of
express Integrity constraints with greater

than straightforward

semantic content
referential integrity. For example, it 1s not
possible to express the fact that a relationship
is one-to-one or one-to-many.

Such constraints must be built into the
that

code manipulates the

application
relational database. Since such code is not
generally shared among all applications, it 1s
difficult to ensure that data will be updated
consistently at all times.

By contrast, in the object-oriented model a

class defines a data abstraction and this

abstraction includes a specification of the
operations(methods) that can be applied to
instances of the class. By defining the
database in terms of such abstrations a high
degree of data independence is achieved. That
is, 1t is possible to alter the way in which a
class is implemented without affecting other
classes or transactions that make use of the
abstraction.

Entity integrity is also handled rather

differently in object-oriented systems. All
cbjects(class mstantiations)have a unique
identity and other objects can refer to that
identity(Data integrity).

Third, Relational database management
systems tend to offer very limited facilities for
the expansion or modification of existing data
structures. But, The tight coupling between
appications and data in the object-oriented
model offers considerably more scdpe for
schema evolution through the extension and
refinement of existing data structures and the
effective reuse of applications code{Schema
evolution).

Fourth, Data manipulation in an object-

oriented database system is accomplished by

119

means of the operations defined 1n the class

interfaces and through the constructs

provided by the programming language
surrounding the class definitions. However,
many object-oriented systems also provide
high level query language interfaces, mostly
based on SQL{Data manipulation).

The relative merits of the relational and
object-oriented approaches to data mange-
ment may be summarized into four as above
(data types, data integrity, schema evolution
and data manipulation). These are main
contribution factors to improve productivity,
software quality, to decrease maintenance

cost in Object-Orented.

REFERENCES

Fred R. Mcfadden & Jeffrey A. Hoffer,

Database. management, The Benjamin

Cummings Publishing Co.

James Rumbaugh, M. Blaha, W. Premer-lani,
F. Eddy, W. Lorensen, Object-Oriented
Modeling and Design. Prentice-Hall

International, 1991, pp.15-18.
John G Hughes(The university of Ulstar),

Object-Oriented Database, Prentice hall

mnternational.

Peter Coad & FEdward Yourdon, Obsect-

Oriented Analysis 2nd Editon. Prentice~

hall International, Inc.

Peter Coad & FEdward Yourdon, Objgect-
Oriented Design. Prentice-Hall interna-

tional, Inc. pp.14-17.

Setrag Khoshafian & Razmik Abnous, Object
Orientation. Wiley, 1990, pp.2-5.

Tim Korson & John D. Mcgregor, “Under-
standing Object-Oriented : A Unifying pa-
radigm”, Communications of the ACM,
September, 1990, VOL.33, No.9. pp.42-50.

120

O MR O

B 42 e aEn AQUEdd AYRRE AFPon, 2FAE W
| 5259 ARl @aeolr], 844 A4 AFFeI. 1 AINER,

YoaEae AAAeN wzade, Asd AL B4E 52 ARWA
Network DB, Hierarchical DB, RDB S& 2% Al83] €4 % OODBe| #4&
2 sHlon, dglnoz= ‘AR FAo ARYAFEA BF AF(A
Study on Object-Oriented Aualysis)”o|t}h. 19| B4 Rok= ARG B4, AAolrt.

