A Study on the Spoken KOrean-Digit Recognition Using the Neural Netwok

神經網을 利用한 韓國語 數字音 認識에 관한 硏究

  • Published : 1992.06.01

Abstract

Taking devantage of the property that Korean digit is a mono-syllable word, we proposed a spoken Korean-digit recognition scheme using the multi-layer perceptron. The spoken Korean-digit is divided into three segments (initial sound, medial vowel, and final consonant) based on the voice starting / ending points and a peak point in the middle of vowel sound. The feature vectors such as cepstrum, reflection coefficients, ${\Delta}$cepstrum and ${\Delta}$energy are extracted from each segment. It has been shown that cepstrum, as an input vector to the neural network, gives higher recognition rate than reflection coefficients. Regression coefficients of cepstrum did not affect as much as we expected on the recognition rate. That is because, it is believed, we extracted features from the selected stationary segments of the input speech signal. With 150 ceptral coefficients obtained from each spoken digit, we achieved correct recognition rate of 97.8%.

한국어 숫자음이 단음절인 특성을 이용하여 각 숫자음에 대해 시간정합을 필요로 하지 않으면서 일정한 수를 갖는 특징벡터를 추출하여 다층구조 신경망으로 인식실험을 하였다. 음성신호의 시작점/끝점과 더불어 모음의 최대 피크점을 기준으로 해석구간을 초성, 중성, 종성의 세 부분으로 나누었으며, 음성신호의 특징벡터로는 반사계수, 켑스트럼, ${\Delta}$켑스트럼, ${\Delta}$에너지 등을 이용하여, 각 특징벡터 및 입력층과 은닉층의 노드 수에 따른 인식율 및 학습속도 등을 비교하였다. 신경망의 입력층의 특징벡터로서 반사계수를 사용한 경우보다 켑스트럼을 사용했을 때가 더 좋은 인식율을 보였다. ${\Delta}$켑스트럼의 특성이 전체 인식율에 미치는 영향이 그다지 크지 않았는데, 이는 한국어 숫자음이 단음절로 구성되어 있는 특징을 이용해 분석 구간을 stationary한 특성을 갖는 세 부분으로 구분하였기 때문이라 생각된다. 각 숫자음에 대해 150개의 켑스트럼을 사용한 경우에 97.8%의 인식율을 얻었다.

Keywords