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GENERALIZED FRACTIONS AND REGULAR SEQUENCES

YEONG MCO SONG

INTRODUCTION

In [8], Sharp and Zakeri introduced a concept of module of generalized fractions in commu-
tative algebra. The concept of module of generalized fractions interacts astonishingly well with
the theory of regular sequences in commutative algebra, and in this paper we develop some of
the connections.

Let A be a commutative ring with identity and M an A-module. One of the reasons why
generalized fractions can play a substantial role in the theory of regular sequences is the injec-
tivity of the determinantal homomorphism, which is proved complete generality by Gibson in
(2, 3.4]. It was also proved for the particular case where A is Noetherian ring and M is finitely
generated, by O’Carroll in [3, 3.7), and in [1, p.690] for the case where M is the ring A itself.

In the first section of this paper we give the brief résumé of the theory of Sharp and Zakeri,
and also review the important concept of the saturation of a triangular subset. In the second
section we show that the determinantal homomorphism induces an isomorphism. finally, we use
generalized fractions to compare length of maximal M-sequences contained in a specific ideal.

1. PRELIMINARIES

Throughout this paper, A is a commutative ring with identity and M is an A-module.The
positive integers are denoted by N with n as a typical element, while Ln(A) denotes the set
of n x n lower triangular matrices over A. As usual, |H| denotes the determinant of a matrix
H € Ln(A), while T denotes matrix transpose.

A non-empty subset U of A" is called triangular if

(i) given (uy, - ,u) €U, (w1®, - ,u,*") €U foralla; €N,1<i<n;

(i) given (u1,--+,un) and (v1,--+,vs) in U, there exists (wi, -+ ,w,) € U and H,K €
Ln(A) such that

Hluy - un) = [wy - wa]T = Koy -+ v,]7.

Whenever we can do so without ambiguity we shall denote (uy,- -, u,) by u, and [u; - - - u, )7
by 4T, and we shall use obvious extensions of this notations.

Given such a triangular subset U of A", we can form the module of generalized fractions
U™"M = {m/ujm € M,u € U}, where m/u denotes the equivalence class of the pair (m, u) €
M x U under the following equivalence relation ~ on M x U :

(¢,u) ~ (d,v) precisely when there exist w € U and P,Q € Ln(A) such that Pu? = w7 =
QvT, with [Plc— {Qld e 07 wi M.
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Now U~"M is an A-module under the operations
a/u+b/v=(|Hla +|K|b)/w,
r-{a/u) = ra/u,

for r € A,a,b € M,u,v € U, and any choice of H, K € Ln(A) and w € U such that HuT =
wT = KvT. Furthermore we shall need the following basic property which give a hint about
the useful role modules of generalized fractions can play in the theory of regular sequences.

PROPOSITION 1.1. ([7,2.2] & [8,3.3]) Assume that the triangular subset U of A™ consists
entirely of poor M-sequences. Let m € M and u = (uy,--- ,u,) € U. Then

n-1

m/u=0in U™"M if and only if m € Y _ u;M.
1
In [4,§2], Riley introduces the idea of a saturated triangular subset and gives interesting

properties of these. Given a triangular subset U the saturation of U is

U={v=(v1,---,v,) € A"| there exist H € Ln(A) and
u € U such that HvT = 4T},

The triangular subset U is saturated if U = U. One of the properties of saturated triangular
subsets is stated in the following proposition.

PROPOSITION 1.2. ([4,2.9]) Let V and U be triangular subset of A® with V C U C V.

Then the natural A-homomorphism
c: V"M — UM
given by o(m/u) = mfu for all m € M,u € U, is an isomorphism.

2. GENERALIZED FRACTIONS AND DETERMINANTAL HOMOMORPHISMS.

NOTATION 2.1. Suppose that £ = (21, -+ ,24),¥y = (y1, - ,¥n) € A" and H € Ln(A) are
such that HzT = yT. By [8,2.2], .

n n
HIQ SziM) €D uM.
1 1
Hence there is induced an A-homomorphism
n n
g M/Z:B,'M — M/Zy.'M
1 1

for which ag(m+ 37 ;M) = |H|m + 3.7 v;M for each m € M. The homomorphism ag will
be called the determinantal homomorphism (induced by H ).
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PROPOSITION 2.2. ([3,3.2]) Suppose that z = (z1,-+ ,2n),¥ = (Y1, - ,yn) € A™ are
such that

(i) y¥ = HzT for some H € Ln(A), and

(ii) y is a poor M-sequence.

Then the homomorphism
n n
o M/Z:c.-M — M/Zy.-M
1 1

of 2.1 is a monomorphism and z is a poor M -sequence.
COROLLARY 2.3. Let £ = (zy,- - ,z,) be a poor M-sequence, and let
Ur ={(7",--- y2p)lr, -+ e €N}
be the triangular subset of A™. Then its saturation U, consists entirely of poor M-sequences.

DEFINITION AND REMARKS 2.4. Let A be Noetherian and M be a non-zero A-
module. Let a be an ideal of A. Let z,,---,z, form an M-sequence of elements of a. (We say
” M -sequence (contained) in a”.)

(i) We say that zy,--- ,z, form a mazimal M-sequence (contained) in a if there does not
exist z,41 € a such that zy,--- ,z,, 2,4, form an M-sequence. If M/aM # O, then zy1,--- ,z,
form a maximal M-sequence contained in a if and only if a C 3(M/ ] ;M) (We use 3(M)
to denote the set of zero divisors on M.)

(i1) There exist M-sequences contained in a, for the empty M-sequence is one such. Also,
by [6,3.3], every M-sequence contained in a can be extended to a maximal such.

NOTATION 2.5. Let U be a triangular subset of A™ and let a be an ideal of A. We shall
denote {6 € U""M|aé = 0} by Ann(a,U~"M), read as "the annihilator of a in U""M .

PROPOSITION 2.6. Leta be an ideal of A and let U be a triangular subset of A® which con-
sists entirely of poor M -sequences. Suppose thatm € M,z = (z1,- - ,zn), ¥y = (Y1, -~ ,yn) €U
and H = (h;;) € Ln(A) are such that

(yﬂﬁ € Ann(a, (U x {1})"""1 M),
that HzT = yT and that z,,--- ,z, € a. Then
m _ m
(v,1) ~ (z,1)

for some m’ € M.

Proof. By 1.2 and 2.2, we can suppose that U is saturated. Then (21, -, 2, ¥i+1, > ,¥n) €U
(for each i = 1,--- ,n) by virtue of the fact that Hi[z; - Z;yi41 - Yn]T = (41 - yn]7, where

"hyy

H,

]
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Now, the proposition is proved by a straightforward inductive process, and the details are left
to the reader. [J

THEOREM 2.7. Let a be an ideal of A and let z = (23, ,2n),¥ = (Y1, - ,Yn) € A™ be
such that there exists H € Ln(A) with HzT = yT. Suppose that y is a poor M-sequence and
), -+ ,Zs € a (so that, by 2.2, both z and y are poor M-sequences contained in a). Then the
determinantal homomorphism oy of 2.2 induces an isomorphism

ay = Ann(a,ag) : (zM : a)/cM — (yM : a)/yM.

Proof. Of course (zM : a)/zM = Ann(a, M/zM), etc., and a}(t +zM) = |H|t + yM for all
t € (zM : a). It is immediate from 2.2 that o} is a monomorphism, and we show now that it
is surjective.

Let s € (yM : a). We work with the triangular subset

V=0, x {1}

of A"*! and we note that (y,1) €V and (z,1) € V also since HzT = yT. The generalized
fraction Z_)' € V~""1M is annihilated by a. because s € (yM : a). By 2.3, V consists
entirely of poor M-sequences; it therefore follows from 2.6 that there exists m € M such that,

in V-r-lM,
s m

@D~ (=D
Since this generalized fraction is annihilated by g, it follows from 1.1 that m € (zM : a). Also,

because Hz? = yT, we have
s m [Hlm

1) @1 (y1)’
another use of 1.1 therefore shows that s — |[H|m € yM; this shows that a}, is surjective. O
REMARKS 2.8. Let the situation be as in 2.7,s0 that z = (z,, -+ ,2,),y = (y1, - ,Yn) are

poor M-sequences contained in the ideal a of A such that Hz7 = y” for some H € Ln(A).
(i) The A-homomorphism

¢:(zM:a) — (U x 1)) 7'M

defined by ¢(t) = (;'—1)- for all t € (M : a) has kernel M, by 1.1; moreover the same result
shows that Im¢ C Ann(a,(U; x {1})"""'M). We now show that Im¢é¢ = Ann(a,(Ur x
{1})7"~1M) by means of 2.6: it is easy to see that U, x {1} consists entirely of poor M-
sequences, and an arbitrary element ¢ of Ann(a,(U; x {1})""~!M) has the form

t
(z;‘,... ,z;"’l)
forsomet € M and ry,--- ,r, €N. Since D[z; - - - z,4]7 = [2]* - - - 27»]T, where D is the diagonal
matrix diag{z]*~! ... z/»=1], it follows from 2.6 and 1.1 that £ € Im¢. Thus there exists an

A-isomorphism

¥z : (&M : a)/zM — Ann(a, (U, x {1})"""1 M)
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which is such that ¥, (t + zM) = (z_tﬁ for allt € (zM : a).
(ii) Note that z € U,, so that
A U, x {1} ¢ T, x {1}.
In fact, if we let V be any triangular subset of A™ such that z € V C (7!,, so that
U x {1} CV x {1} € U, x {1},
then it is easy to check that the diagram

(&M : a)/zM ‘{—’ Ann{(a, (Uz x {1))~"-1M))

o

Ann((a,(V x {1})"""1M))

i | I

Ann((a, (Uy x {1})~""1M))

(vM - 0)/yM —Z Ann((a,(Uy x (1)) M)

in which a},; is the isomorphism of 2.7 and x1, x2, x3 are the natural monomorphisms, commutes.
By 1.2, x3 is an isomorphism. It therefore follows that y; and x, are also isomorphisms.

3. LENGTH OF MAXIMAL M-SEQUENCE

In this section we are going to introduce some Noetherian hypotheses under which we can
give necessary and sufficient conditions for the vanishing of the module (zM : a)/zM of 2.8.
Probably the most important situation for the developement of the theory of grade is that
where A is Noetherian and M is finitely generated. However, at least part of the theory can be
developed in more general situations without much additional effort, and in order to do this we
make the following definition.

DEFINITION 3.1. Let A be Noetherian. We say that an A-module M is avoidant if, when-
ever a is an ideal of A and £ = (z,, - ,z,) is a poor M-sequence contained in a such that
a C 3(M/zM), then a C p for some p € Ass(M/zM).

EXAMPLES 3.2. Let A be Noetherian
(i) The most important example of an avoidant A-modules is a finitely generated A-module
M: then, for every poor M-sequence z = (z1,--- ,Zn), the set Ass(M/zM) is finite; since

3MizMy= ) »
pEAss(M[/zM)

it follows from ordinary ” prime avoidance” that M is avoidant.

(i) Any countably generated module over a complete local ring A is an avoidant A-module:
See [6,3.2 and 2.9).

For the rest of this section, assume that A is Noetherian and M is an avoidant A-module.
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LEMMA 3.3. Let z = (21,--- ,z,) be a poor M-sequence composed of elements of the ideal
a of A. Then (zM : a) = zM if and only if there exists z,4; € a such that (z,zp41) =
(21, ,Zn,Zny1) Is a poor M-sequence.

Proof. (<) Suppose that there exists £,41 € a such that (z,z,41) is a poor M-sequence. Let
m € (zM : a). Then z,,.1m € M, so that m € zM since (z,z,41) is a poor M-sequence.

(=) Assume that (zM : a) = zM. Suppose that there does not exist £,4; € a such that
(z,zn41) is a poor M-sequence. This means that a C 3(M/z M), so that, since M is avoidant,
a C p for some p € Ass(M/zM). Now there exists an element of M/zM whose annihilator is
exactly p, and so Ann(a, M/zM) # 0. Thus (zM : a) # M and with this contradiction the
proof is complete. O

The next proposition can be proved easily by induction, and is of assitance in the proof of
Theorem 3.5.

PROPOSITION 3.4. The set of all poor M-sequence of length n is a triangular subset of
A",

Observe that if a is an ideal of A such that M # aM, then any poor M-sequence contained
in a is automatically an M-sequence in a.

THEOREM 3.5. Let a be an ideal of A such that M # aM. Then any two maximal M-
sequence contained in a have the same length.

Proof. In view of 2.4(ii), it is enough to show that if (z1, -+ ,2n_1,2zn) and s' = (81, -, 5n—1)
are M-sequences contained in a, then there exists s, € a such that (&', s,) is an M-sequence.
This we do.

Note that (s/,1) is a poor M-sequence. Therefore, by 3.4, there exist a poor M-sequence
(v1,"** +¥n—-1,¥Yn) and H, K € Ln(A) such that

Hlzy - zp1za]T = [h - Yno1yn)” = K51+ -80-11)7.

Since y; € E’l Az; Caforeach j=1,--- n, it is in fact the case that (y1, - ,¥n—1,¥n) is an
M-sequence in a. Write ¥ = (41, ,¥n-1). By 2.7,

(M :a)/s’M ~(yYM :a)/y'M,

which is zero by 3.3, since (¥/,y,) is an M-sequence in a. Hence (s’M : a)/s'M = 0 and so, by
3.3 again, there exists s, € a such that (s’,s,) is a poor M-sequence. Since (s’,s,) must, in
fact, be an M-sequence, the proof is complete. O

Let a be an ideal of A such that M # aM. Then the common length (see 3.5) of all maximal
M-sequence in a is called the M-grade of a and denoted by gradepra. In this situation, we
have now established the following important facts : there exist M-sequence in a, and every
M-sequence contained in a can be extended to a maximal such, which will have gradejsa terms.
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