DEGREES OF IRREDUCIBLE CHARACTERS AND NORMAL π-COMPLEMENT

JOONG SANG SHIN

1. Introduction

Let G be a finite group and let c.b.(G) be the set of degrees of irreducible complex characters of G.

In[1], Ya.G.Berkovich obtained a theorem:

Theorem. (Berkovich) Let B be the intersection of the kernels of all nonlinear irreducible complex characters of G with p'-degree. Then $B \cap G' \cap P \subseteq P'$, where P is a Sylow p-subgroup of G. Also B has a normal p-complement.

Using the above theorem, Berkovich proved the following well known theorem in different way.

Theorem. (Thompson) Suppose that p devides $\chi(1)$ for every nonlinear irreducible character χ of G. Then G has a normal p-complement.

In this paper, we generalize a part of the above Berkovich's Theorem and we obtain a result as follows:

Theorem 1.1. Let π be a set of primes. Let B be the intersection of the kernels of all nonlinear irreducible complex characters of G with π' -degree. Let S be a π -subgroup of G. Then $B \cap G' \cap S \subset S'$.

Theorem 1.2. Let G be a finite solvable group and let $\pi = \pi(c.d.(G))$. Then G has a normal π -complement and $G' \cap S = S'$, where S is a S_{π} -subgroup of G.

For notations and terminologies not described, one confer [2] and [3]. In particular, we denote by Irr(G) the set of all irreducible characters of G. All characters are considered in this paper are complex characters and all groups are assumed to be finite groups.

2. Preliminaries

Let G be a group and let GL(n,C) be the general linear group of degree n over the complex number field C. A representation of G is a homomorphism Φ from G into GL(n,C). The character χ of G afforded by Φ is the function given by $\chi(g) = tr\Phi(g)$ for $g \in G$.

Let χ be a character of G. Then $\chi(1)$ is called the degree of χ and the set $\ker \chi = \{g \in G | \chi(g) = \chi(1)\}$ is called the kernel of χ .

^{*} Associate Professor, Department of Mathematics , Kyung Won University.

There is a natural way to build modules from representations and representations from modules (cf.[2],[3]). A representation is said to be irreducible (reducible) according as the module built from the representation is irreducible (reducible).

Let χ be a character afforded by Φ . We call χ irreducible (reducible) according as Φ is irreducible (reducible). A character of degree 1 is called a linear character. A linear character is irreducible and irreducible character is linear if and only if its kernel contains the commutator subgroup.

For convenience, we describe the following two definitions.

Definition 2.1. Let χ and ψ be class functions on a group G. The inner product of χ and ψ is defined by

$$[\chi, \psi] = \frac{1}{|G|} \sum_{g \in G} \chi(g) \, \overline{\psi(g)}$$

, where $\overline{\psi(g)}$ is the complex conjugate of $\psi(g)$.

Definition 2.2. Let H be a subgroup of a group G. Let χ be a character of H. The induced character χ^G of χ is defined by

$$\chi^G(g) = \frac{1}{|H|} \sum_{x \in G} \mathring{\chi}(xgx^{-1})$$

,where $\mathring{\chi}$ is defined by $\mathring{\chi}(h) = \chi(h)$ if $h \in H$ and $\mathring{\chi}(y) = 0$ if $y \notin H$.

We describe some lemmas without proof, which is necessary in section 3.

Lemma 2.3. Let χ be a character of G with $\chi = \sum n_i \chi_i$ for $\chi_i \in Irr(G)$. Then $\ker \chi = \bigcap \{\ker \chi_i | n_i > 0\}$.

proof. [3, Lemma 2.21].

Lemma 2.4. Let G be a group with commutator subgroup G'. Then

$$G' = \bigcap \{ \ker \lambda | \lambda \in Irr(G), \lambda(1) = 1 \}.$$

proof. [3, corollary 2.23].

Lemma 2.5. (Frobenius Reciprocity) Let H be a subgroup of a group G. Suppose that φ is a character on H and χ is a character on G. Then

$$[\varphi,\chi_H] = [\varphi^G,\chi].$$

proof. [3, Lemma 5.2].

Lemma 2.6. (Clifford) Let H be a normal subgroup of a group G and let χ be an irreducible character of G. Let θ be an irreducible constituent of χ_H and suppose that $\theta = \theta_1, \theta_2, \dots, \theta_t$ are the distinct conjugates of θ in G. Then $\chi_H = e(\theta_1 + \theta_2 + \dots + \theta_t)$, where $e = [\chi_H, \theta]$.

proof. [3, Theorem 6.2].

Lemma 2.7. (Ito) Let G be solvable. Then G has a normal abelian Sylow p-subgroup if and only if every element of c.d.(G) is relative prime to p.

proof. [3, Theorem 12.33, Corollary 12.34].

Lemma 2.8. (Schur-Zassenhaus) Let H be a normal S_{π} -subgroup of G. Then G possesses an $S_{\pi'}$ -subgroup which is a complement to H in G.

proof. [2, Theorem 6.2.1].

3. MAIN RESULTS

In this section, we prove our main results

Theorem 3.1. Let B be the intersection of the kernels of all nonlinear irreducible characters of G with π' -degree. Let S be a π -subgroup of G. Then

$$B \cap G' \cap S \subset S'$$
.

proof. Suppose that $S_0 = B \cap G' \cap S \not\subseteq S'$. Then there exists a linear character θ of S with $S_0 \not\subseteq \ker \theta$ by Lemma 2.4.

Let χ be an irreducible constituent of the induced character θ^G . Then by Lemma 2.6 (Clifford) we have

$$\chi_S = e(\theta_1 + \theta_2 + \cdots + \theta_t)$$

, where $\theta = \theta_1, \theta_2, \dots, \theta_t$ are the distinct conjugates of θ in G and $e = [\chi_s, \theta]$. Thus

$$S_0 \not\subseteq \bigcap_{i=1}^t \ker \theta_i = \ker \chi_s \subseteq \ker \chi.$$

Note that B is the intersection of the kernels of all nonlinear irreducible characters of G with π' -degree and $S_0 \subseteq B$. Thus it follows that p divides $\chi(1)$ for all nonlinear constituents χ of θ^G for $p \in \pi$.

Since $\theta^G(1) = |G:S| \neq 0 \pmod{p}$ for all $p \in \pi$, θ^G has a linear constituent μ . In this case, we have $\mu_S = \theta$ by Lemma 2.5 and so

$$S_0 \not\subseteq \ker \theta = S \cap \ker \mu$$
.

Thus $S_0 \not\subseteq \ker \mu$. Since $G' \subseteq \ker \mu$, we have

$$B \cap G' \cap S = S_0 \not\subset G'$$

, which is a contradiction. Therefore, $B \cap G' \cap S \subset S'$.

Theorem 3.2. Let G be a finite solvable group and let $\pi = \pi$ (c.d.(G)). Then G has a normal π -complement and $G' \cap S = S'$, where S is a S_{π} -subgroup of G.

proof. Let $\pi(G) - \pi(\operatorname{c.d.}(G)) = \{p_1, p_2, \cdots, p_r\}$. Then, by Lemma 2.7 (Ito), G has a normal abelian sylow p_i -subgroup S_{p_i} for each $i = 1, 2, \cdots, r$. Thus it follows that the product $S_{p_1}S_{p_2}\cdots S_{p_r}$ is a normal π' -subgroup of G. In this case, Lemma 2.8 yields that G has a S_{π} -subgroup and so our first assertion holds.

Since $\pi = \pi$ (c.d.(G)), every nonlinear irreducible character has π -degree. Thus the intersection B of all the kernels of all nonlinear irreducible characters of G of π' -degree is G. By Theorem 3.1, we have

$$G' \cap S = B \cap G' \cap S \subseteq S'$$
.

Since $S' \subseteq G' \cap S$, we can conclude that $G' \cap S = S'$.

REFERENCES

- [1] Berkovich, Ya.G., Degrees of irreducible characters and normal p-complement, Proc. Amer. Math. Soc., 106, 33-35 (1989).
- [2] Gorenstein, D., Finite group, Chelsea, New York, 1980.
- [3] Issacs, I. M., Character theory of finite groups, Academic Press, New York, 1976.
- [4] Suzuki, M., Group theory I, II, Springer-Verlag, New York, 1982, 1986.

DEPARTMENT OF MATHEMATICS KYUNG WON UNIVERSITY, SONGNAM, 461-701, KOREA