Metal-Nitrosyl Complexes(II) : Synthesis and Characterization of Dinitrosyltungsten(O) Complexes

금속-니트로실 착물 (제 2 보) : 디니트로실 텅스텐(O) 착물의 합성과 특성

  • Sang-Oh Oh (Department of Chemistry, College of Natural Science, Kyungpook National University) ;
  • Seong-Jong Mo (Department of Chemistry, College of Natural Science, Kyungpook National University)
  • 오상오 (경북대학교 자연과학대학 화학과) ;
  • 모성종 (경북대학교 자연과학대학 화학과)
  • Published : 1992.12.20

Abstract

The polymeric compound [{$W(NO)_2Cl_2$}$_n$] were prepared by reductive nitrosylation of $WNaNO_2$ and acidified $WFeSO_4$ with $WWCl_6$ at room temperature. The reactions of [{$W(NO)_2Cl_2$}$_n$] with unidentate and bidentate ligands afforded neutral monomeric [$W(NO)_2Cl_2L_2$(or L-L)] in a relative high yields (70$\sim$90%). 3,5-lutidine, ${\gamma}$-cyanopyridine, 1,2-phenylenediamine, 1,10-phenanthroline, sym-diphenylethylenediamine, 9,10-phenanthrenequinone, 1,3-bis(diphenylphosphino)propane, 1,1'-bis(diphenylphosphino)ferrocene and 8-hydroxyquinoline were used as coordinating ligands. These dinitrosyltungsten complexes were characterized by elemental analysis, $^1H$-NMR, infrared, and UV-visible spectroscopy are reported. The spectral data indicated that geometric structures of the products were cis-dinitrosyl-trans-dichloro-cis-$L_2$ of $C_{2v}$ symmetry.

실온에서 $WCl_6$$WNaNO_2$ 및 산성화시킨 $WFeSO_4$의 환원성 니트로실화 반응을 통해 다핵 화합물인 [{$W(NO)_2Cl_2$}$_n$]을 합성하였다. 이 [{$W(NO)_2Cl_2$}$_n$]와 한자리 및 두자리 리간드를 반응시켜 비교적 높은 수득률(70$\sim$90%)로 중성의 단핵 화합물인 [$W(NO)_2Cl_2L_2$(or L-L)]을 얻었다. 배위 리간드로는 3,5-lutidine, ${\gamma}$-cyanopyridine, 1,2-phenylenediamine, 1,10-phenanthroline, sym-diphenylethylenediamine, 9,10-phenanthrenequinone, 1,3-bis(diphenylphosphino)propane, 1,1'-bis(diphenylphosphino)ferrocene 및 8-hydroxyquinoline을 사용하였다. 합성한 디니트로실텡스텐 착물은 원소분석과 적외선, 핵자기 공명 및 전자 흡수 스펙트럼 등을 이용해서 그 특성을 조사하였으며 이들 분광학적 결과로써 모든 화합물의 기하학적 구조가 $C_{2v}$ 대칭인 cis-dinitrosyl-trans-dichloro-cis-$L_2$의 구조임을 확인하였다.

Keywords

References

  1. J. Amer. Chem. Soc. v.91 J. P. Collman;N. W. Hoffman;D. E. Morris
  2. J. Amer. Chem. Soc. v.93 J. P. Collman;P. Farnham;G. Docetti
  3. Coord. Chem. Rev. v.13 J. H. Enemark;R. D. Feltham
  4. J. Mol. Catal. v.5 D. Ballivet;I. Tkatchenko
  5. J. Organomet. Chem. v.124 D. Ballivet;C. Billard;I. Tkatchenko
  6. J. Amer. Chem. Soc. v.93 S. T. Wilson;J. A. Osborn
  7. J. Amer. Chem. Soc. v.92 E. A. Zuech;W. B. Hughes;D. H. Kubicek;E. T. Kittleman
  8. J. Amer. Chem. Soc. v.92 W. B. Hughes
  9. Adv. Chem. Ser. v.132 W. B. Hughes
  10. Inorg. Chim. Acta. Rev. v.6 N. G. Connelly
  11. Inorg. Chem. v.14 R. P. Steward;G. T. Moor
  12. Inorg. Chem. v.16 B. W. Kolthammer;P. Legzdins;J. T. Malito
  13. J. Chem. Soc. Dalton Trans. J. A. McCleverty;A. J. Murray
  14. Inorg. Chem. v.18 P. Legzdins;D. T. Martin
  15. Inorg. Chem. v.19 B. W. Haines;P. Legzidins;J. C. Oxley
  16. J. Kor. Chem. Soc. v.36 S. O. Oh;S. J. Mo
  17. Purification of Laboratory Chemicals D. D. Perrin;W. L. F. Armarego;D. R. Perrin
  18. J. Organomet. Chem. v.56 L. Bencze
  19. Inorg. Chem. v.3 F. A. Cotton;B. F. G. Johson
  20. J. Chem. Soc., A B. F. G. Johnson
  21. J. Chem. Soc., A B. F. G. Johnson;K. H. Al-Obaidi;J. A. McCleverty
  22. J. Chem. Soc. Dalton Trans. M. Green;S. H. Taylor
  23. Ann. Chim. (Rome) v.54 F. Canziani;U. Sartorella;F. Cariati
  24. Aust. J. Chem. v.21 M. W. Anker;R. Colton;I. B. Tomkins
  25. J. Organmet. Chem. v.70 L. Bencze;J. Kohan;B. Mohai;L. Marko
  26. Inorg. Chim. Acta. v.35 S. Sarkar;P. Subramanian
  27. J. Chem. Soc. Dalton Trans. R. Bhattacharyya;G. P. Bhattacharijee
  28. Inorg. Chem. v.12 W. B. Hughes;E. A. Zuech
  29. Coord. Chem. Rev. v.14 K. G. Caulton
  30. J. Chem. Soc. Dalton Trans. D. Ballivet-Tkatchenko
  31. J. Amer. Chem. Soc. v.94 M. O. Visscher;K. G. Caulton
  32. J. Chem. Soc. Dalton Trans. D. Ballivet-Tkatchenko
  33. Chem. Ber. v.104 H. T. Dieck;I. W. Renk
  34. Chem. Ber. v.105 H. T. Dieck;I. W. Renk
  35. Inorg. Chim. Acta. v.28 R. W. Balk;D. J. Stufken;A. Oskam