Metal-Nitrosyl Complexes (I) Synthesis and Characterization of Dinitrosylmolybdenum (O) Complexes

금속-니트로실 착물 (제 1 보) 디니트로실몰리브덴(O) 착물의 합성과 특성

  • Oh Sang-Oh (Department of Chemistry, College of Natural Science, Kyungpook National) ;
  • Mo Seong-Jong (Department of Chemistry, College of Natural Science, Kyungpook National)
  • 오상오 (경북대학교 자연과학대학 화학과) ;
  • 모성종 (경북대학교 자연과학대학 화학과)
  • Published : 1992.10.20

Abstract

The polymeric compound [{Mo(NO)_2Cl_2}n] was prepared by reductive nitrosylation of NaNO_2 and acidified FeSO_4 with MoCl_5. The reactions of [{Mo(NO)_2Cl_2}n] with unidentate and bidentate ligands afforded neutral monomeric $[Mo(NO)_2Cl_2L_2(or L-L)] in high yield (80∼90%). 3,5-Lutidine, {\gamma}-Cyanopyridine, 1,2-Phenylenediamine, 1,10-Phenanthroline, sym-Diphenylethylenediamine, 9,10-Phenanthrenequinone, 1,3-Bis(diphenylphosphino)propane and 8-Hydroxyquinoline were used as coordinating ligands. The preparation and characterization of these dinitrosylmolybdenum complexes by elemental analysis, 1H NMR, infrared, and UV-Visible spectroscopy are reported. The infrared spectra indicate that in all of the compounds prepared, the NO groups occupy cis-positions in the octahedral group of ligands.

MoCl_5와 NaNO_2 및 산성화시킨 FeSO_4의 reductive nitrosylation 반응을 통해 다핵 화합물인 [{Mo(NO)_2Cl_2}n]을 합성하였다. 이 [{Mo(NO)_2Cl_2}n]와 한자리 및 두자리 리간드를 반응시켜 높은 수득률(80∼90%)로 중성의 단핵 화합물인 [Mo(NO)2Cl2L2(or L-L)]을 얻었다. 사용한 리간드는 3,5-Lutidine, {\gamma}-Cyanopyridine, 1,2-Phenylenediamine, 1,10-Phenanthroline, sym-Diphenylethylenediamine, 9,10-Phenanthrenequinone, 1,3-Bis(diphenylphosphino)propane 및 8-Hydroxyquinoline 이였다. 합성한 dinitrosylmolybdenum 착물은 원소분석과 적외선, 핵자기 공명 및 전자 흡수 스펙트럼 등을 이용해서 그 특성을 조사하였다. 적외선 스펙트럼은 모든 화합물이 팔면체 구조로서 두 개의 NO 기가 cis 위치로 배위되어 있음을 보였다.

Keywords

References

  1. J. Chem. Rev. v.79 J. A. McCleverty
  2. Inorg. Chem. v.10 D. M. P. Mingos;J. A. Ibers
  3. Inorg. Chim. Acta. Rev. v.6 N. G. Connelly
  4. Coord. Chem. Rev. v.13 J. H. Enemark;R. D. Feltham
  5. J. Am. Chem. Soc. v.91 D. E. Morris;F. Basolo
  6. J. Chem. Soc. Dalton Trans. J. Chatt;C. T. Kan;G. J. Leigh;C. J. Pickett;D. R. Stanley
  7. J. Am. Chem. Soc. v.91 J. P. Collman;N. W. Hoffman;D. E. Morris
  8. J. Am. Chem. Soc. v.93 S. T. Wilson;J. A. Osborn
  9. J. Organomet. Chem. v.124 D. Ballivet;C. Billard;I. Tkatchenko
  10. J. Am. Chem. Soc. v.99 J. H. Enemark;R. D. Feltham;B. T. Huie;P. S. Johnson;K. B. Swedo
  11. J. Am. Chem. Soc. v.94 M. O. Visscher;K. G. Caulton
  12. J. Am. Chem. Soc. v.92 C. G. Pierpont;D. G. Van Derveer;W. Durland;R. Eisenberg
  13. Chem. Ber. v.93 J. Smidt;R. Jira
  14. Inorg. Chem. v.3 F. A. Cotton;B. F. G. Johnson
  15. Inorg. Chem. v.14 R. P. Steward;G. T. Moor
  16. Inorg. Chem. v.16 B. W. Kolthammer;P. Legzdins
  17. J. Chem. Soc. Dalton Trans. J. A. McCleverty;A. J. Murray
  18. Inorg. Chem. v.18 P. Legzdins;D. T. Martin
  19. Inorg. Chem. v.19 B. W. Haines;P. Legzdins;J. C. Oxley
  20. J. Chem. Soc. Dalton Trans. D. Ballivet-Tkatchenko
  21. J. Chem. Soc. A B. F. G. Johnson
  22. J. Chem. Soc. A B. F. G. Johnson;K. H. Al-Obaidi;J. A. McCleverty
  23. J. Chem. Soc. Dalton Trans. M. Green;S. H. Taylor
  24. Ann. Chim(Rome) v.54 F. Canziani;U. Sartorella;F. Cariati
  25. Aust. J. Chem. v.21 M. W. Anker;R. Colton;I. B. Tomkins
  26. J. Organomet. Chem. v.70 L. Bencze;J. Kohan;B. Mohai;L. Marko
  27. Inorg. Chim. Acta v.35 S. Sarkar;P. Subramanian
  28. J. Chem. Soc. Dalton Trans. R. Bhattacharyya;G. P. Bhattacharjee
  29. Inorg. Chem. v.12 W. B. Hughes;E. A. Zuech
  30. J. Organomet. Chem. v.56 L. Bencze
  31. Coord. Chem. Rev. v.14 K. G. Caulton
  32. Inorg. Chem. v.18 T. Nimry;M. A. Urbanic;R. A. Walton
  33. J. Chem. Soc. J. Chatt;H. R. Watson
  34. Inorg. Chem. v.5 L. W. Houk;G. R. Dobson
  35. J. Chem. Soc. Dalton Trans. D. Ballivet-Tkatchenko
  36. Chem. Ber. v.104 H. T. Dieck;I. W. Renk
  37. Chem. Ber. v.105 H. T. Dieck;I. W. Renk
  38. Inorg. Chim. Acta v.28 R. W. Balk;D. J. Stufkens;A. Oskam