폴리아민류를 작용기로 하는 킬레이트수지의 합성 및 분석적 응용

Synthesis and Analytical Application of Chelating Resins Containing Polyamines

  • 김선덕 (大邱大學校 自然科學大學 化學科) ;
  • 박정은 (大邱大學校 自然科學大學 化學科) ;
  • 박면용 (建國大學校 理科大學 化學科)
  • 발행 : 1992.10.20

초록

폴리아민 리간드인 diethylenetriamine(dien), triethylenetetramine(trien), tetraethylenepentamine(tetren), 및 pentaethylenehexamine(penten)을 Chloromethylated Polystyrene $({\circledP}-) 수지에 반응시켜 각기 {\circledP}_L-Dien, {\circledP}_L-Trien, {\circledP}_L-Tetren 및 {\circledP}_L-Penten 수지를 합성한 후 Bjerrum법으로 pH를 측정하여 산해리상수 및 금속과의 안정도상수를 결정하였으며, Van't Hoff 식에 의해 {\Delta}H와 {\Delta}G도 구하였다. 이들 수지의 안정도상수(log k1)는 금속이온의 종류에 따라 Cu(Ⅱ) > Ni(Ⅱ) > Cd(Ⅱ) > Zn(Ⅱ) > Co(Ⅱ)의 순으로 감소하였으며, 수지중 주게 원자인 질소수가 증가함에 따라 {\circledP}_L-Dien < {\circledP}_L-Trien < {\circledP}_L-Tetren < {\circledP}_L-Penten의 순으로 증가하였다. 그리고 pH 변화에 대한 금속이온의 흡착량 및 분리도를 시험해 본 결과 이들 금속이온과의 안정도 상수값의 순서와 일치하였다.

The polyamine resins were synthesized by reacting amines such as diethylenetriamine(dien), triethylenetetramine(trien), tetraethylenepentamine(tetren), and pentaethylenehexamine(penten). Stepwise dissociation constants of amines, enthalpy and free energy of metal chelate were determined. Formation constants $(log k_1) of metal chelates were in order of Cu(Ⅱ) > Ni(Ⅱ) > Cd(Ⅱ) > Zn(Ⅱ) > Co(Ⅱ) and tendency of stabilities were proportional to nitrogen numbers of ligand such as dien < trien < tetren > penten. Elutional selectivites of metal ions on resin were agreed to formation constants of metal chelates. {\Delta}H and {\Delta}G were calculated by Van't Hoff equation. Stability constants (log k1) of metalic complexes were in order Cu(Ⅱ) > Ni(Ⅱ) > Cd(Ⅱ) > Zn(Ⅱ) > Co(Ⅱ), and tendency of stabilities were {\circledP}_L-Dien < {\circledP}_L-Trien < {\circledP}_L-Tetren < {\circledP}_L-Penten. The elutional selectivities of metal ions were agreed to stability constants of metal chelates.

키워드

참고문헌

  1. Comprenhensive Analytical Chemistry v.XIV G. Svehla
  2. Anal. Chim. Acta. v.36 R. Christova;A. Kruschevska
  3. Z. Anal. Chem. v.219 K. H. Lieser;H. Bernhand
  4. Anal. Chem. v.34 J. S. Fritz;B. B. Ctarralda
  5. J. Chromatog. v.25 F. Nelson;D. C. Michelson
  6. Talanta. v.14 J. Korlaish;A. Huber
  7. Talanta. v.21 M. Marhol;K. L. Cheng
  8. Anal. Chem. v.50 R. J. Philips;J. S. Firitz
  9. Anal. Chem. v.48 E. M. Moyers;J. S. Fritz
  10. Polyhedron T. M. Suzuki;T. Yokoyama
  11. Anal. Chem. v.44 J. Dingman Jr.;S. Siggia;C. Barton;K. B. Hiscock
  12. J. Am. Chem. Soc. v.61 H. B. Jonassen;R. B. Leblanc;A. W. Meibohm;R. M. Rogan
  13. J. Phy. Chem. v.55 H. B. Jonassen;A. W. Meibohm
  14. J. Am. CHem. Soc. v.56 H. B. Jonassen;G. G. Hurst;R. B. Leblanc;A. W. Meibohm
  15. J. Am. Chem. Soc. v.72 H. B. Jonassen;R. B. Leblanc;R. M. Rogan
  16. Encycplopedia of Industrial Chemical Analysis v.11 F. S. Smell;L. S. Ette
  17. J. Am. Chem. Soc. v.32 D. Z. Pasto;K. Graves;M. P. Serve
  18. J. C. S. Dalton. S. Bhaduri;H. Khwaja;V. Khananlkar
  19. Bull. Chem. Soc. Jpn. v.56 T. Yokoyama;A. Kikuchi;T. Kimura;T. M. Suzuki
  20. Helv. Chim. Acta. v.33 G. Schwarzenbach
  21. J. C. S. Chem. P. Paoletti;A. Vacca
  22. J. C. S. Dalton. M. Kodama;E. Kimura
  23. J. C. S. Dalton. M. Kodama;E. Kimura
  24. J. Kor. Soc. Anal. Sci. v.1 S. H. Lee;M. Y. Park;S. D. Kim
  25. Anal. Chem. v.58 W. Walkowiak;L . E. Sbewart;H. K. Lee;B. P. Czech;R. A. Bartsch
  26. J. Am. Chem. Soc. v.16 J. D. Lamb;R. M. Lzatt
  27. J. C. S. Dalton. A. Anichini;L. Fabbrizzi;P. Paoletti
  28. An Introduction to Inorganic Chemistry K. F. Purcell;C. Kotz
  29. Langer's Handbook of Chemistry(13th Ed.) John. A. Dean
  30. J. C. S. Dalton. M. Kodama;E. Kimura
  31. J. Am. Chem. Soc. v.80 C. N. Reilley;J. H. Holloway
  32. J. C. S. Dalton. M. Kodama;E. Kimura
  33. Inorg. Chem. v.19 M. Kodama;E. Kimura
  34. Inorg. Chem. v.15 R. Yang;L. Zompa
  35. J. Polym. Soi. v.24 E. Tsuchida;H. Nishide
  36. Mokromol, Chem. v.115 M. Hatano;T. Ymamoto;T. Nozawa;S. Kambara
  37. Inorganic Chemistry Huheey
  38. J. Am. Chem. Soc. v.105 A. Bakac;J. H. Espence;I. I. Creaser;A. M. Sargeson