Standard Transfer Free Energy of Sodium and Cupric Ions in Water-Acetylacetone Solvent System

물-아세틸아세톤 용매계에서 나트륨이온과 구리이온의 표준이동 자유에너지

  • Lee Heung Lark (Department of Chemistry, College of Natural Sciences, Kyungpook National) ;
  • Park Jong-Taek (Department of Chemistry, College of Natural Sciences, Kyungpook National University)
  • 이흥락 (경북대학교 자연과학대학 화학과) ;
  • 박종택 (경북대학교 자연과학대학 화학과)
  • Published : 1992.10.20

Abstract

Standard transfer free energies of sodium and cupric perchlorates in water-acetylacetone solvent system have been determined by electromotive force measurements of galvanic cell and these energies of sodium and cupric ions in this solvent system have been evaluated by the tetrabutylammonium tetraphenylborate assumption as the extrathermodynamic procedure. Standard transfer free energy values of sodium and cupric ions from water to acetylacetone solvent were 5.09 and 4.16 kcal/mol at 25${\circ}C$, respectively. These values mean that acetylacetone is much weaker donor solvent to sodium and cupric ions than water. The standard transfer free energy value of cupric ion from water to mixture solvents which contain small amount of acetylacetone is changed by an unusual form. This is because of the chelate formation effect of acetylacetone to cupric ion.

물-아세틸아세톤 용매계에서 과염소산나트륨과 과염소산구리의 표준이동 자유에너지는 갈바니전지의 기전력을 측정하여 구하였으며, 이 용매계에서 나트륨이온과 구리이온의 표준이동 자유에너지는 extrathermodynamic procedure로서 테트라페닐붕산 테트라부틸암모늄 가정을 써서 계산하였다. 물로부터 아세틸아세톤 용매로 나트륨이온과 구리이온이 이동할 때의 표준자유에너지값은 25${\circ}C$에서 각각 5.09 및 4.16 kcal/mol이었다. 이 값은 아세틸아세톤이 물보다 나트륨이온과 구리이온에 대하여 약한 donor solvent임을 뜻한다. 물로부터 소량의 아세틸아세톤을 포함하는 혼합용매로 구리이온이 이동할 때의 표준자유에너지값은 이상하게 (-)값을 나타내는데, 이것은 아세틸아세톤이 구리이온과 반응하여 킬레이트를 생성하는 효과 때문이다.

Keywords

References

  1. Anal. Chem. v.52 J. F. Coetzee;W. K. Istone
  2. An Instroduction to Physical Organic Chemistry E. M. Kosower
  3. The Donor-Acceptor Approach to Molecular Interaction V. Gutmann
  4. J. Phys. Chem v.72 C. M. Criss;E. Luksha
  5. J. Phys. Chem v.82 J. I. Kim
  6. J. Am. Chem. Soc. v.97 G. R. Hedwig;D. A. Owensby;A. J. Parker
  7. Solvent Extraction in Analytical Chemistry G. Morrison;H. Freiser
  8. The Solvent Extraction of Metal Chelates J. Stary
  9. Talanta v.24 T. Fuginaga;H. L. Lee
  10. Bull. Inst. Chem. Res. v.56 H. L. Lee;T. Fuginaga
  11. J. Electroanal. Chem. v.55 I. Sakamoto;S. Okazaki(et al.)
  12. Ph. D. Thesis. Kyto Univ. 李興洛
  13. Anal. Chem. v.34 J. F. Coetzee
  14. J. Am. Chem. Soc. v.79 I. M. Kolthoff;J. F. Coetzee
  15. J. Am. Chem. Soc. v.96 D. A. Owensby;A. J. Parker;J. W. Diggle
  16. J. Am. Chem. Soc. v.95 B. G. Cox;A. J. Parker
  17. Instruction Manual: Sudium Ion Electrode, Model 94-11A Orion Research Incorporated
  18. Instruction Manual: Cupric Ion Electrode, Model 94-29A Orion Research Incorporated
  19. Characterization of Solutes in Nonaqueous Solution J. F. Coetzee;D. Frollinin;C. G. Karakatsanis;E. J. Subak, Jr.;K. Umemoto;G. Mamantoc(ed.)
  20. J. Am. Chem. Soc. v.95 B. G. Cox;A. J. Parker
  21. Anal. Chem. v.52 J. F. Coetzee;C. G. Karakatsanis
  22. Nanaqueous Solution Chemistry R. P. T. Tomkins;O. Popovych
  23. Treaties on Analytical Chemistry(2nd ed.) v.1 O. Popovych;P. J. Elving(ed.)
  24. The Chemistry of Non Aqueous Solvents v.1 H. Strehlow;J. J. Lagowski(ed.)
  25. Bull. Chem. Soc. JPN. v.51 T. Kakutani;Y. Morthiro
  26. J. Electroanal. Chem. v.57 I. Sakamoto;S. Okazaki(et al.)
  27. J. Electroanal. Chem. v.246 I. Sakamoto;S. Okazaki(et al.)