Farnesol의 입체선택적 합성

Stereoselective Synthesis of Farnesol

  • 신동수 (창원대학교 자연과학대학 화학과)
  • Dong-Soo Shin (Department of Chemistry, Chang-Won National University)
  • 발행 : 1992.08.20

초록

5-Bromo-2-methylpent-2-ene(2)을 출발물질로하여 farnesol인 (2E, 6E)-3,7,11-trimethyldodeca-2,6,10-trien-1-ol(1)의 입체 선택적 합성을 수행하였다. 5-Bromo-2-methylpent-2-ene(2)을 요오드화시킨 후, 5-lithio-2,3-dihydrofuran과 반응시켜 5-(4-methylpent-3-enyl)-2,3-dihydrofuran(4)을 얻었다. Dihydrofuran 4를 MeMgI와 Ni(O)-촉매 짝지음 반응시켜 (3E)-4,8-dimethylnona-3,7-dien-1-ol(5)을 72%의 수율로 얻었다. 알릴알코올 5를 4단계로 거쳐 (5E)-6,10-dimethylundeca-5,9-dien-2-one(8)으로 변환시켰다. 화합물 8을 벤젠 용매하에서 dimethylmethoxycarbonylmethylphosponate와 반응시킨 다음, 에탄올 용매하에서 $NaBH_4$로 환원시켜서 (2E, 6E)-3,7,11-trimethyldodeca-2,6,10-tiren-1-ol(1)을 얻었다. Dihydrofuran 4와 MeMgI와의 Ni(O)-촉매 짝지음 반응이 본 연구의 farnsol(1)의 합성에서 중요한 단계이다.

Stereoselective synthesis of farnesol, (2E, 6E)-3,7,11-trimethyldodeca-2,6,10-tiren-1-ol(1), was carried out using 5-bromo-2-methylpent-2-ene(2) as a starting material. After conversion of 5-bromo-2-methylpent-2-ene(2) to the corresponding iodide compound, 5-(4-methylpent-3-enyl)-2,3-dihydrofuran(4) was obtained by alkylation of 5-lithio-2,3-dihydrofuran with 5-iodo-2-methylpent-2-ene. Ni(0)-catalyzed coupling reaction of the dihydrofuran 4 with MeMgI was proceeded to give (3E)-4,8-dimethylnona-3,7-dien-1-ol(5) in 72% yield. The resultant homoallylic alcohol 5 was converted to the (5E)-6,10-dimethylundeca-5,9-dien-2-one(8) in 4 steps. Compound 8 was condensed with dimethylmethoxycarbonylmethylphosponate in benzene follwed by $NaBH_4$ reduction in EtOH to yield (2E, 6E)-3,7,11-trimethyldodeca-2,6,10-trien-1-ol(1). Ni(0)-catalyzed coupling reaction of MeMgI with dihydrofuran 4 was a key step in this synthesis of farnesol(1).

키워드

참고문헌

  1. Helv. Chim. Acta. v.4 L. Ruzicka;J. Meyer
  2. Proc. Chem. Soc. L. Ruzica
  3. Experientia v.9 L. Ruzicka;A. Eschenmoser;H. Heusser
  4. Chem. Ztg. v.34 V. F. Elge
  5. Helv. Chim. Acta. v.32 Y. -R. Naves
  6. Helv. Chim. Acta. v.28 D. Laface
  7. J. Org. Chem. v.28 R. B. Bates;D. M. Gale;B. J. Gruner
  8. Helv. Chim. Acta. v.6 L. Ruzica
  9. Zhur. Obshch. Khim. S.S.S.R. v.28 I. N. Nazarov;B. P. Gusev;V. I. Gunar
  10. J. Biol. Chem. v.237 G. Popjak;J. W. Cornforth;R. H. Conforth;R. Ryhage;D. S. Goodman
  11. Bull. Soc. Chim. France M. Julia;S. Julia;R. Guegan
  12. J. Am. Chem. Soc. v.89 E. J. Corey;J. A. Katzenellenbogen;G. H. Posner
  13. J. Indian Chem. Soc. v.46 O. P. Vig;J. C. Kapur;C. K. Khurana;B. Vig
  14. Total Synthesis of Natural Producrs v.5 C. H. Heatcock;S. L. Garaham;M. C. Pirrung;F. Plavac;C. T. White;J. ApSimon(ed.)
  15. J. Am. Chem. Soc. v.92 E. J. Corey;H. Yamamoto
  16. Tetrahedron Lett. E. J. Corey;J. I. Shulman;H. Yamamoto
  17. Tetrahedron v.32 B. S. Pifzele;J. S. Baran;D. H. Steinman
  18. Tetrahedron Lett. v.16 M. Kodama;Y. Matuski;S. Ito
  19. J. Chem. Soc., Chem. Commum H. Takayanagi;T. Uyehara;T. Kato
  20. Marine Natural Products: Chemical and Biological Perspectives v.2 E. Fenical;P. J. Scheuer(ed.)
  21. J. Chem. Soc. Chem. Commun. S. Wadman;R. Whitby;C. Yeates;P. Kocienski;K. Cooper
  22. Tetrahedron Lett. v.29 P. Kocienski;S. Wadman;K. Cooper
  23. J. Org. Chem. v.49 E. Wenkert;E. L. Michelotti;C. S. Swindell;M. Tingoli
  24. Tetrahedron v.37 R. K. Boeckman;K. J. Bruza
  25. Synthesis F. Camps;F. J. Snachez;A. Messeguer