Base Catalysed Hydrolysis of Aryl Phenylacetates

Aryl Phenylacetate류의 염기촉매 가수분해 반응

  • Duk-Young Cheong (Department of Chemistry Education, Kyungpook National University) ;
  • Soo-Dong Yoh (Department of Chemistry Education, Kyungpook National University) ;
  • Jae-Hwan Choi (Department of Science Education, Taegu Teacher's College) ;
  • Kwang-Taik Shim (Department of Industrial Chemistry, Ulsan Junior College)
  • 정덕영 (경북대학교 화학교육과) ;
  • 여수동 (경북대학교 화학교육과) ;
  • 최재환 (경북대학교 대구교육대학 과학교육과) ;
  • 심광택 (울산전문대학 공업화학과)
  • Published : 1992.06.20

Abstract

The rates of hydrolysis of aryl phenylacetates have been measured in the presence of piperidine in 80% acetonitrile-20% water(v/v). For the electron withdrawing substituents of leaving group, the hydrolysis is catalyzed by a general base and the Hammett $\rho_{LG}$ and Bronsted value $\beta$ are 5.28 and -2.72 at $30^{\circ}C$, respectively. These high senstivities of Hammett and Bronsted values are $E1_{C}B$ mechanism. But in the electron donating ones, the hydrolysis is catalyzed by a specific base and $B_{AC}2 mechanism is predominated. $pK_{SH}'s of phenylacetic acid ester and rate constants of hydrolysis $k_1$, $k_{-1)$, $k_2$ were calculated.

80% acetonitrile-20% water(v/v) 용액에서 piperidine에 의한 aryl phenylacetate류의 가수분해 반응 속도를 측정하였다. 이탈되는 phnol의 치환기가 전자받개인 경우, 가수분해는 일반 염기촉매로 진행되며 $30^{\circ}C$에서 Hammett $\rho_{LG}$값은 5.28, Bronsted $\beta$값은 -2.72이었다. 이와 같이 매우 큰 Hammett 및 Bronsted 값은 이 반응이 $E1_{C}B$ 메카니즘으로 가수분해됨을 나타낸다. 한편, 전자주개 치환기의 경우는 특수 염기촉매에 의해 가수분해되며 $B_{AC}2 메카니즘이 우세하게 나타났다. Phenylacetic acid ester의 $pK_{SH}를 구하였으며, piperidine에 의한 ester 반응의 가수분해 속도 상수 $k_1$, $k_{-1)$, $k_2$도 계산하였다.

Keywords

References

  1. Mechanism and Theory in Organic Chemistry T. H. Lowry;K. S. Richardson
  2. J. Org. Chem. v.33 J. F. Kirsch;W. Clewell;A. Simom
  3. J. Am. Chem. Soc. v.99 B. Holmquist;T. C. Bruice
  4. Tetrahedron Lett. J. F. King;R. P. Beatson
  5. J. Am. Chem. Soc. v.99 A. Williams;K. T. Douglas;J. S. Loran;M. B. Dany;A. Steltner
  6. J. Org. Chem. v.46 T. J. Broxton;N. W. Duddy
  7. J. Chem. Soc. Perkin Trans. II R. Chandraseker;N. Venkatasubramanian
  8. J. Am. Chem. Soc. v.92 R. F. Pratt;T. C. Bruice
  9. J. Am. Chem. Soc. v.91 B. Holmquist;T. C. Bruice
  10. J. Chem. Soc., Chem. Commun. W. Tagaki;S. Kobayashi;K. Kurihara;Y. Yoshida;Yano
  11. J. Am. Chem. Soc. v.93 L. R. Fedor;W. R. Glave
  12. J. Am. Chem. Soc. v.91 L. R. Fedor
  13. J. Chem. Soc., Chem. Commun. D. G. Oakenfull;T. Riley;V. Gold
  14. J. Chem. Soc. (B) V. Gold;D. G. Oakenfull;T. Reley
  15. J. Am. Chem. Soc. v.92 R. C. Cavestri;L. R. Fedor
  16. Progress in Bioorganic Chemistry v.4 E. T. Kaiser;F. J. Kezdy
  17. J. Am. Chem. Soc. v.91 P. S. Tobis;F. J. Kezdy
  18. $pK_c$ Prediction for Organic Acid and Base D. D. Perrin;B. Dempsy;E. P. Serjeant
  19. Chem. Rev. v.7 A. Williams;K. T. Douglas
  20. J. Chem. Soc., Perkin Trans. II A. Williams