시클로 덱스티린과 그 메틸유도체의 구조분석

Conformational Analysis of Cyclodextrins and Their Methylated Analogs

  • 최희숙 (퍼듀대학 약학대학 약화학과)
  • Hee-Sook Choi (Department Medicinal Chemistry and Pharmacognosy, School of Pharmacy and Pharmacal Science, Purdue University)
  • 발행 : 1992.04.20

초록

${\alpha}$-와 ${\beta}$-시클로덱스트린과 그의 메틸유도체들을 Chemical shift(${\delta}$)와 Coupling constant(J)를 470 MHz $^1H$ NMR을 이용해서 수용액 안에서 분석하였다. 정확한 ${\delta}$와 J값들을 얻기 위해서 Raccoon spin simulation program을 이용해서 실험 data를 분석하였다. 시클로덱스트린의 $C_{5-}C_6$ bond 주위의 rotamer의 분포를 $J_{56a}$$J_{56b}$값을 이용하여 실험 data를 분석하였다. 위 계산에 의해 ${\alpha}$-와 ${\beta}$-시클로덱스트린에서는 gg conformer가 가장 많이 존재하였고 tg conformer가 가장 적게 존재했다. 그러나 그 메틸 유도체에서는 gg conformer가 더 많이 증가하였고 gt conformer가 가장 적게 존재함을 알았다.

The $^1H$ NMR chemical shifts and coupling constants for ${\alpha}$-, permethyl-${\alpha}$-, ${\beta}$-and permethyl-${\beta}$-cyclodextrins in neutral aqueous media were assigned based on the 470MHz spectra. In order to obtain accurate chemical shifts and coupling constants the experimental spectra were analyzed with the Raccoon spin simulation program. The rotamer distribution around the$C_{5-}C_6$ bond of the cyclodextrins evaluated from the coupling constants of $J_{56a}$ and $J_{56b}$. In our calculation of the ${\alpha}$-, and ${\beta}$-cycliodextrin showed that gg conformers were most favorable form and tg conformers were least favorable form. It is very interesting to note the changes in $J_{56a}$, $J_{56b}$ coupling constants of permethylated ${\alpha}$- and ${\beta}$-cyclodextrins from unmodified one. The gg conformers were more increased than unmodified one and instead of tg conformers gt conformers were least favorable one upon methylation.

키워드

참고문헌

  1. Cyclodextrin Chemistry M. L. Bender;M. Komiyama
  2. Tetrahedron v.39 A. P. Croft;R. A. Bartsch
  3. J. Incl. Phenom. v.1 J. Szejtli
  4. Pharm. Int. v.6 K. Uekama
  5. Kagaku To Kogyo v.443 K. Uekama;F. Hirayama
  6. Int. J. Pharm. v.26 B. W. Muller;V. Brauns
  7. J. Incl. Phenom. v.2 J. Pitha
  8. Macromolecules v.10 A. Harada;M. Furue;S. Nozakura
  9. Int. J. Pharm. v.27 Y. Kaji;K. Uekama;H. Yoshikawa;K. Takada;S. Muranishi
  10. J. Incl. Phenom. v.1 J. Szejtli
  11. Pharm. Int. v.6 K. Uekama
  12. Tetrahedron v.24 B. Casu;M. Reggiani
  13. J. Am. Chem. Soc. v.99 D. J. Wood;F. E. Hruska;W. Saenger
  14. Tetrahedron v.41 J. R. Johnson;N. Shanhland
  15. Carbohydr. Res. v.148 Y. Inoue;R. Chujo
  16. Jerusalem Symp. Quantum Chem. Biochem. v.7 W. Saenger
  17. Helv. Chim. Acta v.61 J. Boger;R. J. Corcoran;J. M. Lehn
  18. J. Am. Chem. Soc. v.92 F. E. Hruska;A. A. Grey;I. C. P. Smith
  19. J. Am. Chem. Soc. v.93 F. E. Hruska;A. A. Grey;J. C. Dalton
  20. Can. J. Chem. v.52 D. J. Wood;F. E. Hruska;K. K. Ogilvie
  21. Carbohydr. Res. v.21 J. Defaye;D. Gagnaire;D. Horton;M. Muesser
  22. Biopolymers v.6 M. Sundaralingam