Hydrogen Bonding between Thioamides and Dimethylsulfoxide (DMSO) in $CCl_4$

$CCl_4$속에서 Thioamides 와 Dimethyl Sulfoxide (DMSO) 사이의 수소 결합에 대한 연구

  • 도영락 (고려대학교 이과대학 화학과) ;
  • 김선진 (고려대학교 이과대학 화학과) ;
  • 윤창주 (성심여자대학 화학과) ;
  • 최영상 (고려대학교 이과대학 화학과)
  • Published : 1992.04.20

Abstract

Near-IR spectra for $ν_{\alpha}$+ Amide Ⅱ combination band of thioamides, and very dilute thioamide-DMSO solution in CCl4 were recorded in the temperature range of $5^{\circ}C$ to $55^{\circ}C$. This combination band was resolved by the computer program into two Lorentzian-Gaussian product function which have been identified with monomeric thioamide and thioamide-DMSO 1 : 1 complex. Equilibrium constants and thermodynamic parameters for the thioamide-DMSO hydrogen bonding were elucidated by the analysis of conce ntration and temperature dependent spectra. The hydrogen bonding strength between thioacetamide (TA) and DMSO in $CCl_4$ is stronger than that between thiopropionamide (TPA) and DMSO in CCl4. The ${\Delta}H^{\circ}$ for the TA-DMSO and TPA-DMSO 1 : 1 complex in CCl4 were -15.3 kJ${\cdot}$$mol^{-1}$ and -14.2 kj${\cdot}$$mol^{-1}$, respectively.

사염화탄소 속에서 대단히 묽은 티오아미드 및 티오아미드-DMSO 용액의 $ν_{\alpha}$ + Amide II 조합띠에 대한 근적외선 스펙트럼을 $5^{\circ}C$$55^{\circ}C$ 사이에서 얻었다. 이 조합띠는 두 개의 Lorentzian-Gaussian product 함수로 분해되며, 각각은 단체 티오아미드 및 1 : 1 티오아미드-DMSO 복합체로 확인되었다. 티오아세트아미드(TA)와 DMSO 사이의 수소결합은 티오프로피온 아미드(TPA)와 DMSO 사이의 수소결합보다 약간 강하며 $CCl_4$ 속에서 TA-DMSO와 TPA-DMSO 1: 1 복합체에 대한 ${\Delta}H^{\circ}$는 각각 -15.3 kJ${\cdot}$$mol^{-1}$ 및 -14.2 kj${\cdot}$$mol^{-1}$이었다.

Keywords

References

  1. J. Phys. Chem. v.85 J. N. Spencer;S. K. Berger;C. R. Powell;B. D. Henning;G. S. Furman;W. M. Loffredo;E. M. Rydberg;R. A. Neubert;C. E. Shoop;D. N. Blauch
  2. Can. J. Chem. v.58 J. N. Spencer;R. C. Garrett;F. J. Mayer;J. E. Merkle;C. R. Powell;M. T. Tran;S. K. Berger
  3. J. Phys. Chem. v.78 O. D. Bonner;Y. S. Choi
  4. J. Phys. Chem. v.78 O. D. Bonner;Y. S. Choi
  5. Spectrochim. Acta v.31A O. D. Bonner;Y. S. Choi
  6. J. Phys. Chem. v.82 J. N. Spencer;J. E. Gleim;M. L. Hackman;C. H. Blevins;R. C. Garrett
  7. J. Phys. Chem. v.89 R. Wolny(et al.)
  8. J. Phys. Chem. v.75 L. L. Graham;C. Y. Chang
  9. J. Phys. Chem. v.75 L. L. Graham;C. Y. Chang
  10. J. Phys. Chem. v.72 O. D. Bonner;G. B. Woolsey
  11. J. Chem. Soc., Faraday Trans. I v.84 G. Eaton;M. C. R. Symons
  12. J. Am. Chem. Soc. v.100 J. E. Del Bene
  13. J. Am. Chem. Soc. v.96 A. Johnsson;P. A. Kollman;S. Rothenberg;J. Mckelvey
  14. J. Am. Chem. Soc. v.94 A. Johnsson;P. A. Kollman
  15. J. Mol. Struct. v.26 T. Otterson
  16. J. Mol. Struct. v.26 T. Otterson;H. H. Jensen
  17. J. Am. Chem. Soc. v.101 P. J. Rossky;M. Karplus
  18. J. Am. Chem. Soc. v.100 J. E. Del Bene
  19. J. Phys. Chem. v.92 A. J Stone;S. L. Price
  20. J. Comp. Chem. v.11 J. B. O. Mitchell;S. L. Price
  21. Spectrochim. Acta v.41A Y. S. Choi;Y. D. Huh;O. D. Bonner
  22. J. Korean Chem. Soc. v.29 B. C. Kim;K. S. Song;K. Kim;Y. S. Choi
  23. J. Korean Chem. Soc. v.30 K. B. Lee;B. C. Kim;C. J. Yun;O. D. Bonner;Y. S. Choi
  24. J. Korean Chem. Soc. v.33 B. C. Kim;C. J. Yun;K. S. Song;Y. S. Choi
  25. Bull. Korean Chem. Soc. v.11 H. S. Park;J. Y. Choi;Y. A. Kim;Y. D. Huh;C. J. Yun;Y. S. Choi
  26. Cryobiology v.15 E. D. Pegg;C. S. Green;A. C. Walter
  27. Cryol. Lett. v.1 F. Beaujean;C. Leforestier;P. Mannoni
  28. The Donor-Aceeptor Approach to Molecular Interaction Victor Gutman
  29. J. Raman. Spec. v.11 A. Bertoluzza;S. Bonara;G. Fini;M. A. Battaglia;P. Monti
  30. J. Phys. Chem. v.75 S. A. Schichman;R. L. Amey
  31. J. Phys. Chem. v.77 J. R. Scherer;M. K. Gu;S. Kint