CO Adsorption on Cation Exchaged Zeolite A and Mordenite

陽이온 交煥된 제올라이트 A 및 Mordenite 上의 CO 氣體 吸着

  • Kim Jong Taik (Department of Industrial Chemistry, Kyungpook National University) ;
  • Kim Heung Won (Department of Industrial Chemistry, Kyungpook National University) ;
  • Kim Myung Chul (Department of Chemistry, Kyungpook Sanup University) ;
  • Lee Jong Ryul (Department of Chemistry, Kyungpook Sanup University)
  • 김종택 (慶北大學校 工科大學 工業化學科) ;
  • 김흥원 (慶北大學校 工科大學 工業化學科) ;
  • 김명철 (慶北産業大學 敎養科程部) ;
  • 이종렬 (慶北産業大學 敎養科程部)
  • Published : 1992.02.20

Abstract

The adsorption properties of CO on the cation exchanged natural zeolite, $K_{111}$ and cation effects upon the CO adsorption were studied. $Na^+-,\;Cu^{2+}-\;and\;Ba^{2+}-\;K_{111}$ exhibited relatively good CO adsorption capacities and $Ba^{2+}- K_{111}$ treated by 0.4 N-$BaCl_2$ solution proved itself as the best adsorbent and superior to the synthetic zeolite 4A and 5A. The observed adsorption tendency due to the cations were in the order of $Ba^{2+}>Cu^{2+}>Na^+>K^+>Mg^{2+}>Ca^{2+}$. The cation exchanged number per unit cell as well as the kind of cation which forms bond with CO molecules in different intensities and other mineral factors such as pore size indicated to be important factors to the CO adsorption properties. The CNDO/2 calculations were performed to compare the adsorption tendencies and CO interaction energy of cations in $K_{111}$.

양이온 교환된 천연 제올라이트 $K_{111}$의 CO 기체 흡착특성과 양이온효과를 연구하였다. $Na^+-,\;Cu^{2+}-\;및\;Ba^{2+}-\;K_{111}$ 의 경우 우수한 CO 흡착능을 가졌으며, 0.4N $BaCl_2$ 수용액으로 처리된 것이 가장 큰 CO 흡착능을 나타내었고, 합성 제올라이트 4A, 5A보다 뛰어난 흡착능을 가짐을 알 수 있었다. 양이온의 종류에 따른 흡착경향은 $Ba^{2+}>Cu^{2+}>Na^+>K^+>Mg^{2+}>Ca^{2+}$ 의 순서로 나타났으며 단위격자당 교환된 양이온의 수와 종류 그리고 세공의 크기 등이 CO 기체의 흡착에 있어 주요 인자로 작용함을 알 수 있었다. 그리고 K111의 양이온에 따른 흡착경향을 비교하기 위해서 CNDO/2 계산을 행하였다. 계산된 결과 8원환 모델 내의 양이온과 CO 기체와의 상호작용 에너지는 실험결과와 비슷한 경향임을 알 수 있었다.

Keywords

References

  1. Zeolite Molecular Sieves D. W. Breck
  2. Infrared spectra of surface compounds A. V. Kieselev;V. I. Lygin
  3. Bull. Chem. Soc. Jpn v.48 M. Nitta;K. Ogawa;K. Aomura
  4. J. Phys. Chem. v.82 Y. Kim;K. Seff
  5. Acta Cryystallogr. v.22 K. Seff;D. P. Shoemaker
  6. Molecular sieves L. V. C. Rees;T. A. Berry
  7. v.661;209;902 no.86;209;902 K. Igawa;K. Itabashi;K. Murai;K. Murai;H. Wada
  8. JPN Kokai Tokkyo Koho JP. v.59;198;359 no.84;198;395
  9. Approximate Moecular Orbital Theory J. A. Pople;D. L. Beveridge
  10. Z. Kristallogr. v.133 V. Gramlich;W. M. Meier
  11. J. Phys. Chem. v.77 Y. Russell;Yanagida;A. Allen;Amaro;K. Seff
  12. Adv. Chem. Ser. v.101 A. Dyer;W. Z. Celler;M. Shute
  13. J. Phys. Chem. v.82 no.14 K. Ogawa;M. Nitta;K. Aomura
  14. Trans. Faraday. soc. v.49 no.10449 R. M. Barrer;D. W. Book
  15. Atlas of zeolite structure types, structure commission of international zeolite Assco W. M. Meier;D. H. Olson
  16. Zeolite and Clay Minerals as Adsorbents and Molecular Siever R. M. Barrer
  17. Adv. Chem. Ser. v.121 Molecular Sieves Y. H. Ma;C. Mancel
  18. J. Phys. Chem. v.71 H. S. Sherry;H. F. Walton
  19. Physical Chemistry of Surface A. W. Adamson
  20. 화학공학 v.27 no.5 김종택;박두선;이종렬