Abstract
Rhodium(I) and iridium(II) complexes, M(Cl$O_4$)(CO)$(PPh_3)_2$ and [M(CO)$(PPh_3)_3$]Cl$O_4$ (M = Rh, Ir), and RhX(CO)$(PPh_3)_2$ (X = Cl, Br, OH) catalyze the carbonylation of benzyl alcohols to produce phenylacetic acids under 6 atm of CO at $110^{\circ}C$ in deuterated chloroform. Benzyl alcohols initially undergo dehydration to give dibenzyl ethers which are then carbonylated to benzyl phenylacetates, and the hydrolysis of benzyl phenylacetate produces phenylacetic acids and benzyl alcohols. The carbonylation is accompanied with dehydrogenation followed by hydrogenolysis of benzyl alcohols giving benzaldehydes and methylbenzenes which are also produced by CO2 elimination of phenylacetic acids. Phenylacetic acid is also produced in the reactions of benzyl bromide with CO catalytically in the presence of Rh(Cl$O_4$)(CO)$(PPh_3)_2$ and $H_2O$, and stoichiometrically with Rh(OH)(CO)$(PPh_3)_2$ in the absence of $H_2O$.