DOI QR코드

DOI QR Code

Effects of Light Pulse Intensity and Quencher Concentration on the Time-Dependent Fluorescence Quenching Kinetics

  • Yang Mino (Department of Chemistry, Seoul National University) ;
  • Lee Sangyoub (Department of Chemistry, Seoul National University) ;
  • Shin, Kook Joe (Department of Chemistry, Seoul National University) ;
  • Choo Kwang Yul (Department of Chemistry, Seoul National University) ;
  • Lee Duckhwan (Department of Chemistry, Sogang University)
  • Published : 1992.06.20

Abstract

By using the general theoretical framework proposed recently for treating the fluorescence quenching kinetics, we investigate the effect of light pulse intensity on the decay of fluorescence which follows excitation of fluorophors by the light pulse of very short but finite duration. It is seen that conventional theory breaks down when the exciting light pulse has a pulse width comparable to the fluorescent lifetime and its intensity is very high. We also find that even when the light intensity is not too high, conventional theory may fail in either of the following cases: (i) when the quencher concentration is high, (ii) when there is an attractive potential of mean force between the fluorophor and quencher, or (iii) when the energy transfer from the fluorophor to the quencher may also occur at a distance, e.g., via dipole-dipole interaction. The validity of the predictions of the present theory may thus be tested by fluorescence quenching experiments performed under such situations.

Keywords

References

  1. Photophysics of aromatic molecules J. B. Birks
  2. Organic molecular photophysics J. B. Birks;J. B. Birks(ed.)
  3. J. Chem. Phys. v.62 T. L. Nemzek;W. R. Ware
  4. J. Chem. Pyhs. v.75 D. P. Millar;R. J. Robbins;A. H. Zewail
  5. Chem. Phys. Letters v.95 R. W. Wijnaendts van Resandt
  6. Chem. Phys. Letters v.120 N. Tamai;T. Yamazaki;I. Yamazaki;N. Mataga
  7. J. Phys. Chem. v.91 J. R. Lakowicz;M. L. Johnson;I. Gryczynski;N. Joshi;G. Laczko
  8. J. Chem. Phys. v.89 N. Periasamy;S. Doraiswamy;B. Venkataraman;G. R. Fleming
  9. J. Phys. Chem. v.94 G. C. Joshi;R. Bhatnagar;S. Doraiswamy;N. Periasamy
  10. J. Chem. Phys. v.77 F. Heisel;J. A. Miehe
  11. J. Chem. Phys. v.74 J. K. Baird;S. P. Escott
  12. Diffusion-limited reactions in comprehensive chemical kinetics v.25 S. A. Rice;C. H. Bamford(ed.);C. F. H. Tipper(ed.);R. G. Compton(ed.)
  13. J. Chem. Pyhs. v.58 G. Wilemski;M. Fixman
  14. Chem. Phys. Letters v.34 U. Gosele;M. Hauser;U. K. A. Klein;R. Frey
  15. J. Chem. Phys. v.74 J. K. Baird;J. S. McCaskill;N. Y. March
  16. J. Chem. Phys. v.78
  17. J. Phys. Chem. v.86 J. Keizer
  18. Chem. Rev. v.87 J. Keizer
  19. J. Am. Chem. Soc. v.105;107; J. Keizer
  20. J. Chem. Phys. v.82 R. I. Cukier
  21. Chem. Phys. Letters v.134 B. Stevens
  22. Chem. Phys. v.120 J. Najbar
  23. J. Phys. Chem. v.93 A. Szabo
  24. J. Chem. Phys. v.92 H. Zhou;A. Szabo
  25. Chem. Phys. v.156 S. Lee;M. Yang;K. J. Shin;K. Y. Choo;D. Lee
  26. Bull. Korean Chem. Soc. v.12 M. Yang;S. Lee;K. J. Shin;K. Y. Choo;D. Lee
  27. J. Chem. Phys. v.86 S. Lee;M. Karplus
  28. Numerical recipes W. H. Press;B. P. Flannery;S. A. Teukolsky;W. T. Vetterling
  29. Handbook of mathematical functions M. Abramowitz;I. A. Stegun

Cited by

  1. Diffusion influenced reversible transfer of electronic excitation energy in liquid solution by long-range interaction vol.106, pp.12, 1992, https://doi.org/10.1063/1.473529
  2. Electronic excitation transfer in Lennard-Jones fluid: comparison between approaches based on molecular dynamics simulation and the many-body Smoluchowski equation vol.106, pp.20, 1992, https://doi.org/10.1063/1.473897
  3. Kinetic theory of bimolecular reactions in liquid. I. Steady-state fluorescence quenching kinetics vol.108, pp.1, 1992, https://doi.org/10.1063/1.475368
  4. Nonequilibrium Distribution Function Theory of Many-Particle Effects in the Reversible Reactions of the Type A+B ↔ C+B vol.26, pp.12, 1992, https://doi.org/10.5012/bkcs.2005.26.12.1986