DOI QR코드

DOI QR Code

Electrochemical Studies of Viologens in Homogeneous Aqueous and Sodium Dodecyl Sulfate Micellar Solutions

  • Park Joon Woo (Department of Chemistry and Ewha Womans University) ;
  • Ko Seung Hyeon (Department of Chemistry and Ewha Womans University) ;
  • Park Jong-Yoon (Department of Chemistry and Ewha Womans University)
  • Published : 1992.06.20

Abstract

Cyclic voltammetric behavior of symmetric (dimethyl, diheptyl, dioctyl, dibenzyl) and asymmetric (methyloctyl, methyldodecyl, methylbenzyl) viologens was investigated in homogeneous aqueous solution and sodium dodecyl sulfate (SDS) micellar media. In SDS-free 0.1 M NaCl solutions, the reduction potential is less negative as the chain length of alkyl substituent is longer. This is due to the stabilization of the reduced cationic radical and neutral form of viologen by adsorption on electrode surface. The adsorbed species show the "aging-effect". With the exceptions of methyldodecyl viologen and methylbenzyl viologen, the viologens show strong tendency of conproportionation reaction between viologen dications and neutral forms. In cases of methyldodecyl viologen and methylbenzyl viologen, the conproportionation reaction is kinetically disfavored, though it is thermodynamically favorable. SDS micelles dissolve the adsorbed species and the viologens exhibit two reversible redox processes in SDS micellar solutions. The reduction potentials of viologens in SDS micellar solutions depend little on the length of alkyl chain. Benzyl-substituted viologens are more easily reduced than the alkyl substituted viologens, presumably due to electron-withdrawing character of benzyl group.

Keywords

References

  1. Bipyridinium Herbicides L. A. Summers
  2. Membrane Mimetic Chemistry J. H. Fendler
  3. Coord. Chem. Res. v.46 K. Kalyanasundaram
  4. Accts. Chem. Res. v.13 D. G. Whitten
  5. Energy Resources through Photochemistry and Catalysis M. Gratzel
  6. Bull. Korean Chem. Soc. v.6 J. W. Park;Y. H. Paik
  7. Bull. Korean Chem. Soc. v.7 J. W. Park;Y. H. Paik
  8. Bull. Korean Chem. Soc. v.11 J. W. Park;M. Y. Suk;B.-T. Ahn
  9. J. Am. Chem. Soc. v.105 Z. Goren;I. Willer
  10. J. Am. Chem. Soc. v.106 R. Maidan;Z. Goren;J. Y. Becker;I. Willer
  11. J. Photochem. v.28 I. Willer;Z. Goren;D. Mandler;R. Maidan;T. Degani
  12. J. Am. Chem. Soc. v.106 T. Endo;Y. Saotome;M. Okawara
  13. Macromolecules v.16 Y. Saotome;T. Endo;M. Okawara
  14. J. Polym. Sci. Polym. Chem. Ed. v.21 K. Ageishi;T. Endo;M. Okawara
  15. J. Org. Chem. v.51 T. Endo;K. Ageishi;M. Okawara
  16. J. Am. Chem. Soc. v.106 D. Mandler;I. Willer
  17. J. Chem. Soc. Perkin Trans. Ⅰ K. K. Park;C. W. Lee;S.-Y. Oh;J. W. Park
  18. J. Electrochem. Soc. v.121 H. T. van Dam;J. J. Ponjee
  19. Appl. Phys. Lett. v.29 K. Belinko
  20. J. Electrochem. Soc. v.124 J. Bruinink;C. G. A. Kregting;J. J. Ponjee
  21. J. Electrochem. Soc. v.128 G. G. Barna;J. G. Fish
  22. J. Electrochem. Soc. v.125 J. Bruinink;C. G. A. Kregting
  23. J. Appl. Electrochem. v.17 A. Yasuda;H. Mori;J. Seto
  24. Chem. Soc. Rev. v.10 C. L . Bird;A. T. Kuhn
  25. J. Electroanal. Chem. v.246 T. Lu;T. M. Cotton;J. K. Hurst;D. H. P. Thompson
  26. J. Phys. Chem. v.92 T. Lu;T. M. Cotton;J. K. Hurst;D. H. P. Thompson
  27. J. Phys. Chem. v.91 J. W. Park;Y. H. Paik
  28. Bull. Korean Chem. Soc. v.5 H.-L. Nam;J. W. Park
  29. J. Phys. Chem. v.89;91 A. E. Kaifer;A. J. Bard
  30. Langmuir v.4 E. Dayalan;S. Qutubuddin;A. Hussam
  31. Langmuir v.4 P. A. Quintela;A. Diaz;A. E. Kaifer
  32. J. Am. Chem. Soc. v.108 A. E. Kaifer
  33. J. Phys. Chem. v.87 T. Miyashita;T. Murakata;M. Masuda
  34. J. Phys. Chem. v.91 M. J. Colaneri;L. Kevan;D. H. P. Thompson;J. K. Hurst
  35. J. Phys. Chem. v.93 M. J. Colaneri;L. Kevan;R. Schmehl
  36. J. Chem. Soc. Chem. Commun. M. Heyrovsky
  37. J. Am. Chem. Soc. v.85 E. M. Kosower;J. L. Cotter
  38. J. Phys. Chem. v.91 M. Ito;H. Sasaki;M. Takahashi
  39. Bull. Chem. Soc. Jpn. v.59 K. Kobayashi; F. Fujisaki;T. Yoshimine;K. Niki
  40. Appl. Spectroscopy v.40 M. Datta;R. E. Jansson;J. J. Freeman
  41. J. Electrochem. v.124 R. J. Jajinski
  42. J. Phys. Chem. v.91 T. L. Lu;T. M. Cotton
  43. J. Electronal. Chem. v.185 B. Scharifker;C. Wehrmann
  44. Jpn. J. Appl. Phys. v.14 T. Kawata;M. Yamamoto
  45. J. Am. Chem. Soc. v.102 R. H. Schmehl;D. G. Whitten
  46. J. Chem. Soc. Faraday Trans. 1 v.78 S. J. Atherton;J. H. Baxendale;B. M. Hoey
  47. Bull. Korean Chem. Soc. v.8 J. W. Park;M.-A. Chung;B.-T. Ahn;H. Lee
  48. Photochem. Photobiol. v.31 M. P. Pileni;A. M. Braun;M. Gratzel
  49. J. Inc. Phenom. Mol. Rec. Chem. v.7 A. E. Kaifer;P. A. Quintela;J. M. Schutte

Cited by

  1. Spectroelectrochemical study on monomer/dimer equilibria of methylalkylviologen cation radicals with and without α-cyclodextrin vol.407, pp.1, 1992, https://doi.org/10.1016/0022-0728(95)04472-8
  2. Electrochemical study of methylalkylviologens using an electrochemical quartz crystal microbalance vol.463, pp.2, 1992, https://doi.org/10.1016/s0022-0728(98)00460-4
  3. Radical‐Cation Dimerization Overwhelms Inclusion in [n]Pseudorotaxanes vol.20, pp.24, 2014, https://doi.org/10.1002/chem.201400069
  4. Phospholipids improve selectivity and sensitivity of carbon electrodes: Determination of pesticide Paraquat vol.116, pp.9, 1992, https://doi.org/10.1002/ejlt.201300389
  5. Voltammetry of Viologens Revealing Reduction of Hydrophobic Interaction in Frozen Aqueous Electrolyte Solutions vol.4, pp.1, 1992, https://doi.org/10.1002/celc.201600560
  6. Discovery of Unusually Stable Reduced Viologen via Synergistic Folding and Encapsulation vol.166, pp.15, 1992, https://doi.org/10.1149/2.0711915jes