DOI QR코드

DOI QR Code

Etching of Al and Cu Solids by $SiCl_4$ Molecules

  • Cho Chul Hee (Department of Chemistry and Institute of Basic Science, Kangweon National University) ;
  • Lee Woan (Department of Chemistry and Institute of Basic Science, Kangweon National University) ;
  • Rhee Chang Hwan (Department of Chemistry and Institute of Basic Science, Kangweon National University) ;
  • Park Seung Chul (Department of Chemistry and Institute of Basic Science, Kangweon National University)
  • Published : 1992.04.20

Abstract

The classical trajectory method, previously applied to the reactions of polyatomic molecules with fcc structured metal solids[S. C. Park, C. H. Cho, and C. H. Rhee, Bull. Kor. Chem. Soc., 11, $1(1990)]^1$ is extended to the collision energy dependence of the reaction of the Al solid by $SiCl_4$ molecules. We have calculated etching yields, degrees of anisotropy, kinetic energy distributions, and angular distributions for the reactions of the Al solid and compared with those for the reactions of the Cu solid. Over the range of collision energies we considered, the reactions of the Al soIid show higher etching yield and better anisotropy than the reactions of the Cu solid. Details of reaction mechanisms and the relevance of these calculations for the dry etching of CuAl alloy are discussed.

Keywords

References

  1. Bull. Kor. Chem. Soc. v.11 S. C. Park;C. H. Cho;C. H. Rhee
  2. Phys. Rev. B. v.39 R. A. Stansfield;K. Broomfield;D. C. Clary
  3. J. Phys. D. v.20 S. C. Park;R. A. Stansfield;D. C. Clary
  4. J. Appl. Phys. v.60 S. C. Park;D. C. Clary
  5. J. Chem. Phys. v.76 R. A. Gibbs;S. P. Holland;K. E. Foley;B. J. Garrison;N. Winograd
  6. J. Appl. Phys. v.67 M. C. Chuang;J. W. Coburn
  7. J. Appl. Phys. v.50 J. W. Coburn;H. F. Winters
  8. J. Appl. Phys. v.55 V. M. Donnelly;D. L. Flamm;W. C. Dautremont-Smith;D. J. Werder
  9. J. Appl. Phys. v.55 A. W. Kolfschoten;R. A. Haring;A. Haring;A. E. de Vries
  10. J. Appl. Phys. v.64 D. J. Oostra;A. Haring;R. P. van Ingen;A. E. de Vries
  11. VLSI Technology S. M. Sze;S. M. Sze(ed.)
  12. Glow Discharge Process B. N. Chapman
  13. Ann. Rev. Mater. Sci. v.13 J. W. Coburn;H. F. Winters
  14. J. Chem. Phys. v.72 K. E. Foley;B. J. Garrison
  15. Surf. Sci. v.87 B. J. Garrison;N. Winograd;D. E. Harrison, Jr.
  16. Rad Effects v.80 M. H. Shaipro;P. K. Haff;T. A. Tombrello;D. E. Harrison, Jr.;R. P. Webb
  17. Can. J. Phys. v.53 D. P. Jackson
  18. Phys. Rev. Lett. v.41 N. Winograd;B. J. Garrison;D. E. Harrison, Jr.
  19. Phys. Rev. B. v.18 B. J. Garrison;N. Winograd;D. E. Harrison
  20. Phys. Rev. Lett v.44 S. P. Holland;B. J. Garrison;N. Winograd
  21. Chem. Phys. Lett. v.114 D. W. Moon;N. Winograd;B. J. Garrison
  22. Phys. Rev. v.184 P. Sigmund
  23. Topics in Applied Physics v.47 P. Sigmund;R. Behrisch(ed.)
  24. J. Appl. Phys. v.55 W. Y. Lee;J. M. Eldridge
  25. J. Chem. Phys. v.77 J. M. Bowman;S. C. Park
  26. J. Chem. Phys. v.81 S. C. Park;J. M. Bowman
  27. Surf. Sci. v.137 R. R. Lucchese;J. C. Tully
  28. J. Vac. Sci. Technol. v.20 J. W. Coburn;E.-A. Knabbe;E. Kay
  29. Jap. J. Appl. Phys. v.20 S. Tachi;K. Miyake;T. Tokuyama
  30. Phil. Mag. v.18 M. W. Thompson
  31. Phys. Rep. v.80 M. W. Thompson
  32. Phil. Mag. v.18 B. M. Farmery;M. W. Thompson
  33. Rad. Effects v.17 D. E. Harrison, Jr.;W. L. Moore, Jr.;H. T. Holcombe
  34. VLSI Technology C. J. Mogab;S. M. Sze(ed.)
  35. A. E. De Vries