Theoretical Studies on the Photochemical Reaction of Psoralen with Purine and Pyrimidine Base

Ja Hong Kim* and Sung Ho Sohn
Department of Chemistry Education, Chonbuk National University, Chonju 560-756
Received November 18, 1991

Abstract

The spectroscopic studies of the 5,7 -dimethoxycoumarin(5,7 -DMC) and $4,5^{\prime}, 8$-trimethylpsoralen(TMP) and the conformational stability of 5.7 -DMC-thymidine, $4,5^{\prime}, 8$-TMP-thymine were carried out by the CNDO/S and molecular mechanics calculation. Theoretical transition energies and direction of polarizations calculated by the CNDO/S method have been used for the interpretation of the observed results. The calculated absorption spectra of $5,7-\mathrm{DMC}$ are qualitatively similar to experimental ones with their characteristic visible bands. MM2 force field calculation on the possible $\mathrm{C}_{4}-$ cyclophotoadducts formed between 5,7-DMC and thymidine through a cycloaddition of $\mathrm{C}_{3}, \mathrm{C}_{4}$ bond of 5,6 -DMC to $\mathrm{C}_{5}, \mathrm{C}_{6}$ bond of thymidine showed the most stable photocycloadduct to have the anti-head to tail configuration. The major photoadduct of $4,5^{\prime}, 8$-TMP-thymine has the cis-anti configuration.

Introduction

Psoralens are known to photoreact with pyrimidine bases in DNA upon irradiation with near UV light producing skin erythema, and lethal and mutagenic effects in bacteria. ${ }^{1 \sim 3}$

The biological activity of psoralen is primarily due to the result of the covalent bonding they undergo with nucleic acids. This process is believed to involve three major steps: (1) noncovalent intercalative binding to the DNA helix, (2) formation of monoaddition product between the psoralen and DNA base upon long-wavelength ultraviolet irradiation and (3) absorption of a second pioton by some monoadducts to form diadducts, which resull in interstrand cross-links. ${ }^{4}$

The molecular orbital calculations predict that the triplet excited state is the better condition for the cycloaddition reaction than the singlet excited state. The photoreaction of 5,7-DMC with only one photochemically reactive functional group(pyrone double bond) with thymidine has been reported as a model reaction in order to elucidate the stereochemistry of photoadducts. ${ }^{5}$

4, $5^{\prime}, 8$-TMP is known to be highly photoreactive bifunctional furocoumarin to the nucleic acid. The relative rates of the photoaddition of $4,5^{\prime}, 8$-TMP to DNA is about eight times higher than that of psoralen in aqueous system, higher due in part to the high quantum yield and to higher absorbance quantum yield and to higher absorbance at the exciting wavelength. ${ }^{6}$ The skin sensitizing potency of psoralens has been correlated with their photoreactivity toward pyrimidine bases of DNA via cycloaddition. ${ }^{7+9}$

In this paper, we describe the spectroscopic studies of the $5,7-$ DMC, 4,5 , 8 -TMP and the conformational stability of 5,7-DMC-thymidine, 4,5',8-TMP-thymine photocycloadducts.

Calculation

The electronic transition energies were calculated by the CNDO/S calculation. ${ }^{\text {. }}$ In the hypothetical molecular complexes, the chemical reactivity index can be used as a measure of the relative reactivity index of the various position of the photocycloaddition.

Molecular mechanics calculations were performed by using

(a) 5,7-DNC

(b) Thymidine

Figure 1. The numbering scheme of $5,7-\mathrm{DMC}$ and thymidine for calculation.

(a) TIP (4,5', 8-trinethylpsoralen.

(b) Thymine.

Figure 2. The numbering scheme of TMP and thymine.

MM2 force field and BDNR method as a minimum algorithm. ${ }^{11.12}$ The numbering scheme for heavy atoms for 5,7DMC, thymidine and $4,5^{\prime}, 8$-TMP, thymine photocycloadducts are shown in Figure 1, 2.

Results and Discussion

The spectral data of the $5,7-\mathrm{DMC}$ are compared with the results obtained from the oscillator calculation. Oscillator st-

Table 1. The CNDO/S Calculation of Excite State Arising from Low Energy Configuration for 5.7-DMC
Configuration Energy(nm) Transition moment Oscillator strength

$29-40$	568	1.569	0.132
$30-40$	425	1.228	0.108
$32-40$	351	1.483	0.190
$33-40$	336	2.138	0.413
$34-40$	327	2.648	0.650
$34-41$	298	1.908	0.372
$35-42$	272	3.379	1.277
$36-40$	253	1.510	0.274
$37-40$	222	1.898	0.492

Table 2. The CNDO/S Calculation of Excite State Arising from Low Energy Configuration for $4,5^{\prime}, 8$-TMP

Configuration	Energy(nm)	Transition moment	Oscillator strength
$37-\mathbf{4 4}$	327	0.957	0.085
$38-\mathbf{4 4}$	280	0.427	0.020
$38-\mathbf{4 5}$	255	3.548	1.497
$\mathbf{4 0 - 4 4}$	247	0.363	0.016
$40-46$	242	1.567	0.308
$41-44$	221	0.885	0.108
$41-45$	212	0.435	0.027
$42-45$	208	1.951	0.555
$42-46$	202	0.600	0.054
$42-47$	201	0.653	0.064

Figure 3. Calculated UV transition energy with correction energy for $5.7-\mathrm{DMC}$ by CNDO/S calculation (- -: experiment, -: calculation).

Figure 4. Calculated UV transition energy with correction energy for TMP by CNDO/S calculation (---: experiment, -: calculation).

Figure 5. Polarization of transitions predicted by CNDO/S calculation for $5,7-\mathrm{DMC}$ (the transition lengths mean relative intensity of transition moment).
rength, f, is used quantitatively to indicate the relative intensity of various transitions, primarily in the visible UV and vacuum UV region. Table 1, 2 and Figure 3, 4 show theoretical predictions of the transition energies and absorption spectrum of 5,7 -DMC, $4,5^{\prime}, 8$-TMP respectively. The oscillator strength is directly proportional to the integrated area corresponding to an absorption band. Absorption spectra were resolved by Gaussian curve analysis. Peak areas in the near UV region were determined by multipling the area under the curve from max of UV region to the longer wavelength region by two. A good agreement between the predicted and observed transition energies can be seen. The lowest $\pi \rightarrow \pi^{*}$ transition is potarized nearly along the long molecular axis in Figure 5, 6 but it is mainly localized in the pyrone ring. $5,7-$ DMC exhibits $\lambda_{\text {max }}$ at $272 \mathrm{~nm}^{13}$ where as $4,5^{\prime}, 8-\mathrm{TMP}$ shows blue shifts of this band to 255 nm . This behavior

Figure 6. Polarization of transitions predicted by CNDO/S calculation for $4,5^{\prime}, 8$-TMP (the transition lengths mean relative intensity of transition moment).

Table 3. The Results of Molecuiar Mechanics Calculation for Possible Photocycloadducts of 5.7 -DMC 〈> Thymidine (in $\mathrm{Kcal} / \mathrm{mol}$)

Conformation	$E_{\text {totad }}$	$E_{\text {answa }}$	$E_{\text {ssunin }}$	ΔH_{f}
Syn-H,H	112.972	46.133	91.202	-314.151
Syn-H.T	60.494	37.853	38.924	-365.831
Anti-H.H	56.204	34.496	34.434	-371.043
Anti-H.T	54.602	34.886	32.832	-372.660

is reconcilable in terms of CNDO/S results, which include the highering of the f value for the first band and the alternation of the polarization direstion from near long axis in 5,7 -DMC to near short axis in $4,5^{\prime}, 8$-TMP. These differences are due to a significant gap between the low lying (π, π^{*}) and (n, π^{*}) singlet states in 5,7-DMC. Configuration analysis of the $\mathrm{S}_{1}\left(\pi, \pi^{*}\right)$ state of $5,7-\mathrm{DMC}$ suggests that this state possesses significant charge transfer character in the $\mathrm{C}_{3}, \mathrm{C}_{4}$ bond of the pyrone ring. Thus the singlet excited state becomes electron-rich at the $\mathrm{C}_{3}, \mathrm{C}_{4}$ bond, relative to the ground state, as the $\mathrm{C}_{3}, \mathrm{C}_{4}$ bond becomes photochemically reactive and the most reactive position of thymidine is predicted at $\mathrm{C}_{5}, \mathrm{C}_{6}$.
Relative conformational energies and geometries for 5 , 7-DMC with thymidine appear to be affected by the reactive position. The photocycloaddition of a thymidine to a 5,7-DMC generates a cyclobutane ring with four asymmetric centers. This photocycloaddition can occur in either a syn or anti configuration, where syn refers to a configuration where the $\mathrm{C}_{57} \mathrm{C}_{6}$ position of the thymidine and the C_{3} or C_{4} position of the $5,7-\mathrm{DMC}$ are at diagonally opposed corners of the cyclobutane ring. Anti, then refers to a configuration where the $\mathrm{C}_{5}, \mathrm{C}_{6}$ position of the thyriidine is adjacent to either the C_{3} or C_{4} position of the $5,7-\mathrm{DMC}$.
The results of molecular mechanics calculation for possible photocycloadducts of $5,7-\mathrm{DMC}$ with thymidine are shown in Table 3 and Figure 7. In all cases, rotations about the 5,7DMC with thymidine bond we.e investigated in order to locate the lowest energy conformation.
The calculated heats of formation and the energies given in Table 3 refer to the stable conformer for possible photocy-

sym head to Head

tra lead to Tail

Anti Head to Tail

Figure 7. Stereo ORTEP drawing of molecular configuration of the possible photocycloadducts of 5,7 -DMC $\langle>$ Thymidine.

Table 4. The Results of Molecular Mechanics Calculation for Possible Photocycloadducts of TMP〈 >Thymine (in Kcal/mol)

Conformation		$E_{\text {buat }}$	$E_{\text {tusion }}$	$E_{\text {spruis }}$	ΔH_{j}
$\begin{gathered} \mathrm{C}_{3}, \mathrm{C}_{4} \\ \text { of } \\ \text { TMP } \end{gathered}$	trans-anti	27.438	19.339	19.968	-220.218
	trans-syn	28.443	20.169	20.973	-219.277
	cis-anti	28.050	19.488	20.580	-220.415
	cis-syn	26.958	17.813	19.488	-221.429
$\begin{gathered} \mathrm{C}_{4}^{\prime}: \mathrm{C}_{5}^{\prime} \\ \text { of } \\ \text { TMP } \end{gathered}$	trans-anti	26.691	25.418	19.751	-220.311
	trans-syn	30.923	25.546	20.983	-219.157
	cis-anti	28.402	25.377	18.461	-221.419
	cis-syn	30.502	25.447	20.562	-219.501

cloadducts. The heats of formation are calculated in the range $-314 \mathrm{Kcal} / \mathrm{mol} \sim-372 \mathrm{Kcal} / \mathrm{mol}$. For the anti configuration, the anti-head to tail was found to have the lowest energy and the anti-head to head form has $1 \mathrm{Kcal} / \mathrm{mol}$ higher energy. The anti-head to tail form was calculated to be most stable structure for the photocycloaddition of 5.7-DMC with thymidine.

Kanne et al. investigated the photoreaction of 4,5,8-TMP with DNA, in which $c i s-s y n$ furan side monoadducts was isolated as a major product. ${ }^{24}$ It is interesting that $4,5^{\prime}, 8-7 \mathrm{TMP}$ showed a preference of furan side addition over pyrone side addition. $4,5^{\prime}, 8$-TMP has also been reported to give C_{4}-photodimers on UV irradiation in dioxane solution and in the solid state. ${ }^{15}$

Table 4 and Figure 8 show the results of molecular mechnics calculation for the possible monofunctional cycloaddition for $4,5^{\prime}, 8$-TMP with thymine. Dihedral drive calculations were indicative of the torsion angle allowing minima at 60° and 270°. This torsional preference is also borne out experimentally. ${ }^{16}$ It is general that the number and approximate location of energy minima are less sensitive to the force

(a) DP(3.4) ${ }^{2}$ Thy, cig-arn

(b) TPP(4'.5') $<>$ Thy cts-antif

Figure 8. Stereo ORTEP drawing of molecular conformation of photocyclo adducts of TMP〈 > Thymine.
field than their energies.
In Table 4 compare eight photocycloadducts, cis-syn conformation for $4,5^{\prime}, 8$-TMP's pyrone ring and cis-anti conformation for $4,5^{\prime}, 8$-TMP's furan ring with thymine are most profitable to formation, stereo ORTEP drawing for thes two conformers are given in Figure 6. The cis conformation found for the model adduct is that which might be expected from the position of intercalation of $4,5^{\prime}, 8$-TMP with thymine which is often assumed. ${ }^{4}$

Acknowledgement. The financial support(891-0303-$027-02$) for this work from the Korea Science and Engineering Foundation is gratefully acknowledged.

References

1. P.-S. Song and K. J. Tapley, Photochem. Photobiol., 29,

1177 (1979).
2. B. J. Parsons, Photochem. Photobiol., 32. 813 (1980).
3. J. E. Hearst, S. T. Isaacs. D. Kanne, H. Rapoport, and K. Straub, Q. Rev. Biophys. 17, 44 (1984).
4. D. Kanne, K. Straub, J. E. Hearst, and H. Rapoport, J. Am. Chem. Sac., 104, 6754-6764 (1982).
5. W. W. Mantulin and P.-S. Song, J. Am. Chem. Soc., 95, 5122 (1973).
6. S. C. Shim, K. Y. Choi, and P.-S. Song, Photochem. Photobiol., 27, 25-31 (1978).
7. L. Musajo, F. Bordin, G. Caporale, S. Marciani, and G. Rigatti, Photochem. Photobiol. 6, 711 (1967).
8. L. Musajo, F. Bordin, and R. Bevilacqua, Photochem. Photobiol., 6, 927 (1967).
9. L. Musajo and G. Rodighiero, Photochem. Photobiol., 11, 27 (1978).
10. (a) J. Dell Bene and H. H. Jaffe, J. Chem. Phys., 48, 1807, 4050 (1968); (b) J. Dell Bene and H. H. Jaff e, J. Chem. Phys., 49, 122 (1968); (c) J. Dell Bene and H. H. Jaff'e, J. Chem. Phys., 50, 1126 (1969).
11. U. Burket and N. L. Allinger, Molecular Mechanics, ACS Monograph, 177, Am. Chem. Soc., Washington DC. 1981.
12. T. A. Clark, A Handbook of Computational Chemistry, John Wiley and Sons, New York, 1985.
13. S. C. Shim, E. I. Kim, and K. T. Lee, Bull. Kor. Chem. Soc., 8, 140 (1987)
14. K. Staub, D. Kanne, J. E. Hearst, and H. Rapopport, J. Am. Chem. Sac., 103, 2347-2355 (1981).
15. S. Marciani, F. Dall'Acqua, P. Redighiero, G. Caporale, and G. Rodighiero, Gazz Chim. Ital., 100, 435-451 (1970).
16. S. C. Shim, S. S. Lee, and S. J. Choi, Photochem. Photobiol., 51, 1-7 (1990).

Transformation of Bicyclic Ketal Compound to 1,2-Cyclopentanediol via 1,5-Diketone

Jong-Gab Jun*, Dong Gyun Shin, Hyun Shun Shin, and Sung Hoon Kim ${ }^{\dagger}$
Department of Chemistry Hallym University, Chunchon 200-702
${ }^{\dagger}$ Korea Research Institute of Chemical Technology, Taejon 305-606. Received November 22, 1991

Abstract

New method for preparing cyclopentanediol from bicyclic ketal is described. Bicyclic ketal is cleaved to give 1,5 -diketone, which is then reductively coupled intramolecularly to yield 1,2 -cyclopentanediol. A solution of bicyclic ketal (1a) in methylene chloride was treated with aluminum chioride(2 eq.)-sodium iodide(1.5 eq.) at ambient temperature for 3 h to give the 1,5 -diketone ($\mathbf{2 a}$) in 71% yield after basic work-up followed by short path column chromatography. A solution of the 1,5 -diketone (2 a) in THF was reacted with titanium tetrachloride(6 eq.) $\mathrm{Mg}(\mathrm{Hg})\left(0.3\right.$ eq.) at $0^{\circ} \mathrm{C}$ for 4 h to give the 1,2 -cyclopentanediol (3a) in 75% yield after basic work-up followed by short path column chromatography.

Introduction

There has been an increased interest in methods for form-
ing cyclopentane ring systems, reflecting the increasing number of natural products known to incorporate such ring systems as a major structural entity. ${ }^{\text {. }}$

