DOI QR코드

DOI QR Code

Excited State Intramolecular Proton Transfer and Physical Properties of 7-Hydroxyquinoline

  • Kang Wee-Kyeong (Center for Molecular Science and Department of Chemistry, Korea Advanced Institute of Science and Technology) ;
  • Cho Sung-June (Center for Molecular Science and Department of Chemistry, Korea Advanced Institute of Science and Technology) ;
  • Lee Minyung (Spectroscopy Laboratory, Korea Research Institute of Standards and Science) ;
  • Kim Dong-Ho (Spectroscopy Laboratory, Korea Research Institute of Standards and Science) ;
  • Ryoo Ryong (Center for Molecular Science and Department of Chemistry, Korea Advanced Institute of Science and Technology) ;
  • Jung Kyung-Hoon (Center for Molecular Science and Department of Chemistry, Korea Advanced Institute of Science and Technology) ;
  • Jang Du-Jeon (Spectroscopy Laboratory, Korea Research Institute of Standards and Science)
  • Published : 1992.04.20

Abstract

The excited state intramolecular proton transfer and physical properties of 7-hydroxyquinoline are studied in various solutions and heterogeneous systems by measuring steady state and time-resolved fluorescence, reflection and NMR spectra. Proton transfer is observed only in protic solvents owing to its requirement of hydrogen-bonded solvent bridge for proton relay transfer. The activation energies of the proton transfer are 2.3 and 5.4 kJ/mol in $CH_3OH$ and in $CH_3OD$, respectively. Dimers of normal molecules are stable in microcrystalline powder form and undergo an extremely fast concerted double proton transfer upon absorption of a photon, consequently forming dimers of tautomer molecules. In the supercage of zeolite NaY, its tautomeric form is stable in the ground state and does not show any proton transfer.

Keywords

References

  1. Z. Physik. Chem. Stoichiom. Verwanschaftsl. v.108 J. N. Bronsted;K. Pedersen
  2. Z. Elektrochem. v.54 T. Forster
  3. Z. Elektrochem. v.60 A. Weller
  4. Progr. React. Kinet. v.1 A. Weller
  5. J. Chem. Soc. Faradat Trans. 2 v.82 M. Kasha
  6. Chem. Phys. Lett. v.148 F. Laermer;T. Elsaesser;W. Kaiser
  7. J. Chem. Phys. v.90 G. A. Brucker;D. F. Kelley
  8. J. Phys. Chem. v.93 P. F. Barbara;P. K. Walsh;L. F. Brus
  9. J. Am. Chem. Soc. v.112 J. Caralan;F. Fabero;M. S. Guijarro;R. M. Claramunt;M. D. S. Maria;M. C. Forcs-Foces;F. H. Cano;J. Elguero;R. Sastre
  10. J. Phys. Chem. v.94 M. Itoch;Y. Fujiwara;M. Matsudo;A. Higashikata;K. Tokumura
  11. Bull. Korean Chem. Soc. v.12 D.-J. Jang
  12. J. Phys. Chem. v.88 D. MaMorrow;M. Kasha
  13. J. Phys. Chem. v.90 D.-J. Jang;G. A. Brucker;D. F. Kelley
  14. Proc. Natl Acad. Sci. USA v.63 C. A. Taylor;M. A. El-Bayoumi;M. Kasha
  15. J. Am. Chem. Soc. v.96 P.-S. Song;M. Sun;A. Koziolawa
  16. J. Chem. Soc. S. F. Mason;J. Philp;B. E. Smith
  17. Chem. Phys. Lett. v.85 P. J. Thistlethwaite;P. J. Corkill
  18. Chem. Phys. Lett. v.96 P. J. Thistlethwaite
  19. J. Am. Chem. Soc. v.105 M. Itoch;T. Adachi;K. Tokumura
  20. J. Phys. Chem. v.88 K. Tokumura;M. Itoch
  21. J. Am. Chem. Soc. v.106 M. Itoch;T. Adachi;K. Tokumura
  22. J. Chem. Soc. Perkin Trans. v.2 R. Schipfer;O. S. Wolfbeis;A. Knierzinger
  23. J. Am. Chem. Soc. v.107 M. Itoch;N. Yoshida;M. Takashima
  24. Proc. Natl Acad. Sci. USA v.75 A. Lewis;M. A. Marcus;B. Ehrenberg;H. Crespi
  25. FEBS v.156 D. A. Marvin
  26. Proc. Natl Acad. Sci. USA v.87 D.-J. Jang;M. A. El-Sayed;L. J. Stern;T. Mogi;H. G. Khirana
  27. Advances in Physical Organic Chemistry v.12 J. F. Ireland;P. A. H. Wyatt
  28. J. Phys. Chem. v.95 B. F. Chmelka;J. G. Pearson;S. -B. Liu;R. Ryoo;L. C. de Menorval;A. Pines
  29. J. Phys. Chem. v.94 L. C. de Menoval;D. Raftery;S. -B. Liu;K. Takegoshi;R. Ryoo;A. Pines
  30. Zeolites v.10 R. Ryoo;C. Pak;B. F. Chmelka

Cited by

  1. Solvent-Controlled Excited State Behavior: 2-(2‘-Pyridyl)indoles in Alcohols vol.118, pp.14, 1996, https://doi.org/10.1021/ja952797d
  2. Excited‐State Prototropic Equilibrium Dynamics of 6‐Hydroxyquinoline Encapsulated in Microporous Catalytic Faujasite Zeolites vol.16, pp.42, 2010, https://doi.org/10.1002/chem.201000734
  3. Unraveling the Mechanism of the Photodeprotection Reaction of 8-Bromo- and 8-Chloro-7-hydroxyquinoline Caged Acetates vol.18, pp.22, 1992, https://doi.org/10.1002/chem.201200366
  4. Ground state spectroscopy of hydroxyquinolines: evidence for the formation of protonated species in water-rich dioxane–water mixtures vol.16, pp.1, 2014, https://doi.org/10.1039/c3cp52811a
  5. Non-typical fluorescence studies of excited and ground state proton and hydrogen transfer vol.5, pp.1, 2017, https://doi.org/10.1088/2050-6120/aa5e29
  6. 8-(Pyridin-2-yl)quinolin-7-ol as a Platform for Conjugated Proton Cranes: A DFT Structural Design vol.11, pp.10, 1992, https://doi.org/10.3390/mi11100901