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Abstract

For a planar curve-sided panel with constant or linear density distributions of source or doublet in the
singularity methods, Cantaloube and Rehbach (1986) show that the surface integral can be transformed
into contour integral by using Stokes’ formulas. As an extension of their formulations, this paper deals
with a planar polygonal panel for which we derive the closed-forms of the potentials and the velocities
induced by the singularity distributions.

Test calculations show that the analytical evaluation of the closed-forms is superior to numerical integration
(suggested by Cantaloube and Rehbach) of the contour integral. The compact and explicit expressions may
produce accurate values of matrix elements of simultaneous linear equations in the singularity methods

with much reduced computer tiome.
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1. Introduction

The fundamental problem for computing the po-
tential flow about arbitrary bodies is to determine
velocity potential ¢ in a simply connected fluid do-
main. Using Green’s scalar identity, the velocity
potential can be represented from distributions of
sources and doublets on the boundary surfaces.
Applying the normal boundary condition (that is,
the no-penetration condition) at the collocation poi-
nts in the potential-based panel methds (which have
been widely used in marine hydrodynamics) results
in a linear system of algebraic equations to be soved
for unknown doublet strengths on each panel (or
at each vertex) with known source strengths. The
associated surface integrals should be evaluted at
the collocation points to obtain the matrix elements
of the linear system. Therefore a fast and accurate
computation of these elements is very important
in the numerical solution.

In the singularity methods to the potential flow
problem, the potential ¢ within the fluid domain
D can be expressed approximately as a sum of each
contribution in terms of the surface value of ¢ and
its normal derivativ n * V ¢ on each panel of the

discretized boundary surfaces S,

1 1 1
¢, = _:"Z/L{7E'V<¢_¢ﬂ've(7)}dsc( )
1

Here the subscript & refers to an integration va-
riable. 7 is a distance between an integration point
x:on S; and any field point x , located in D.The
first and the second term in the integral represent
the potential due to a surface distribution, respecti-
vely, of source-type singularity with a density o
=n- V¢ and of doublet-type singularity with a
density p = —¢. The velocity components can be
derived by differentiation of Eq.(1) with respect
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to the coordinates of the field point. We may take
without loss of generality one planar panel as the
integration region concerned herein, which can be
regarded as a part of the discretized boundary sur-
face.

The closed-form expressions of the surfce integ-
rals for constant source distributions over flat qua-
drilateral panels have been introduced by Hess &
Smith (1966). They expressed the surface integrals
as a superposition of line integrals for each side
of the panels, with independent treatment of the
contribution from the side. Webster (1975) has ex-
tended the Hess and Smith analysis to a triangular
panel in order to eliminate the discontinuity prob-
lem for a flat quadrilateral source panel by allowing
a linear variation of the source strength across the
triangular panel. These two approaches are concer-
ned with only the source distributions and the re-
sultant expressions are considerably complicated
to employ a computer code. A simpler and more
unified derivation has been provided by Newman
(1986) for computing the potential due to a constant
doublet or source distribution. His analyses are ba-
sed on the elementary plane geometry related to
the solid angle of a panel. He defined four infinite
sectors (for a quadrilateral panel), bounded by
semi-infinite extensions of the two adjacent sides
of the panel with respect to the corresponding ver-
tices, such that the difference between the domains
of the four sectors is the domain of the panel. Then
the surface integral over each infinite sector is eva-
luated in terms of the included angle of the corres-
ponding vertex projected onto the unit sphere with
center at the field point. He has also described
the more general recursive scheme for computing
the potential due to a source or doublet distribution
of linear, bilinear or higher order form. However
the corresponding results for the induced velocities
due to such singularity distributions do not appear
explicitly.
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Another elegant approach based on mathematical
formulations has been presented by Cantaloube &
Rehbach (1986), by which they introduced more
explicit expressions of the surface integrals for the
source or doublet distribution. With vector opera-
tions of the integrands for using Stokes’ formulas,
they show that the surface integrals for the constant
or linear distributions of sources and doublets over
a planar facet can be transformed into line integrals
along the contour of the panel. First, for subsequent
use in the following sections, we take here their
resultant expressions for the induced potentials ¢
and the induced velocities V ¢ for a source distri-

hution,

. 1
¢‘.°"::——[n-{ GZ"Xdlg_(f_l'f_’)f oé'dll
4n - s r c

+(r_z-r_)(r_t'q)'_t'{Vc><f1n(r+e'r_) dle}
c
-1 (Vo xf rdly) | )

4

| 1
V‘""“"[’l'{ Ud'dlc'*"_lx} = d,
- 4n P c 7

—n(n-e) @XvVo) -+ ¢ In(r+e-7)dl

c
+Vc{r_rf£g-l'—‘—(»_z-z))[ 4-:11{}] (3
c

r

and for a doublet distribution,

¢‘.|JJ= —l{—f pé'dlﬁg"' (tl'e_) (t‘x Vu) °
(4

4n

In(r+e-r)dl.} @
[

- 1 1
V= ——{f v (=) Xal — VN‘{ A dl
4n ¢ r dl [
- x v Xx § 0] (5)
c

It is noted that the signs of the third and the
fifth integral in Eq. (3) and the second and the
third intregral in Eq. (5) are opposite to those in
the original paper (see Suh (1990a)). The superscri-
pts (o) and (p) refer to the source and the doublet

SEE!

singularity respectively. The contour integrals are
performed along the perimeter of the panel C in
a counterclokwise sense. The unit normal to the
surface n points outward in the sense of a right-
handed-rule and 4l is the integration element
along the contour C. The distance vector 7 is defi-
ned as x; — x, where the subscripts £ and p refer
to the source point and the field point respectively.
The unit vector ¢ is taken as + n where the sign
is chosen such that ¢ * r is not negative. For the
use of Stokes’ formulas they used the following
key relation introduced by Guiraud (1978) -

e Xr

1
V(=) = —UX4, with A= ®
r

r(r+e-r)

Here Eq. (6) holds for more generally e indepen-
dent of the integration point x;.

The major advantages of their study are that the
formulations are valid for a planar curve-sided pa-
nel and that the resultant equations are expressed
in a global coordinate wystem while the aforemen-
tioned analyses require the transformation of the
local coordinate system. Thus the expressions deri-
ved by Cantaloube & Rehbach may be regarded as
a more computer-oriented from. They have propo-
sed the use of direct numerical integrations of the
line integrals by an integration quarature (e.g. Sim-
pson rule or Gaussian quadrature), illustrating the
numerical consistency and accuracy for a linear
doublet distribution on a quadrilateral panel. Ho-
wever when a field point is very close to the sides
or vertices of a panel, a large number of the quadra-
ture base points and considerable effort to choose
these points suitably would be needed in order
to achieve good comparisons with the known values.
Such numerical implementation in a computer code
may lead to a large amount of extra-computer time.

As an extension of the formulation of Canta-

loube & Rehbach, the present paper deals with a
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blanar polygonal panei (i.e. with a planar panel with
an arbitrary number of sides) for which the line
integrals given in Egs. (2) through (5) can be redu-
ced to the closed-forms. Derivation of these closed-
forms is the main scope of the present paper. The
closed-form expressions for the potential and velo-
city induced by a constant source distribution are
presented in section 2, They are expressed compac-
tly as a sum of contribution from each side of the
panel, in terms of appropriate basic integrals. It
will be shown that each contribution depends on
the relative position of a field point with respect
to the side. Also we will consider the limiting cases
that the field point approaches directly above or
below the panel surface (the self-induction cases)
in order to ensure the required singular behavior
of the potential and the velocity. The corresponding
results for a doublet distribution of constant stre-
ngth are provided in section 3. Section 4 is devoted
to analytical evaluations of the basic integrals deri-
ved in the preceding sections. In section 5, a similar
approach is developed to extend the anayses to
a linear variation of soure or doublet strength,
which provides continuous singularity strength dis-
tributions on triangular panels. In section 6, for
the purpose of checking the convenience and accu-
racy of the present approach, we take constant dist-
ributions of singularities on a rectangular panel of
a large aspect ratio and some field points in the
extreme vicinity of the panel. Test computations
of the associated line integrals at the field points
show an advantage of the analytical evaluations
over numerical integrations recommended by Can-
taloube & Rehbach. The same aspect appears in co-
mparisons of the potentials and velocities.

2. Constant Source Distribution

The potential at any field point x, &, y, 2) induced
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by a distribution of sources with unit density ¢ = 1
can be written as, by taking the first two integrals
from Eq. (2),
. 1 r
o= ——{r_l'f =Xdl — ('_1'0/6'(1!:} (7
4n c? c

Using Eq. (6) for A, we can write

. 1
o° = .._{,_,.f _r~_><d£c... (n-r)-
4n 4 - -

f(i“ : ) Rals i }
¢

r rter e-r

_ __l_f 7+ (dl Xn) (8)
C

4n rte-r
Note that find the following useful relation from
this rearrangement :

1 %
—=¢-VXB with B= —=2F (9
7 T rtecr

The term 7 * (dl ¢ X n)/dl ; represents the proje-
ction of the distance vector » onto the vector perpe-
ndicular to both dl ; and 5. Because it is constant
for each side of a straightline and ¢ * r (that is, the
normal distance of the field point from the panel)
is constant for a planar panel, Eq. (8) can be written
as

-°'=-—1—§bf ! (10)
o] n i ¢ 10

=] C,r+a

where N, is the number of sides of the polygon
panel (for example, N, = 3 for triangular panels),
@ = e r is a non-negative constant value for all
sides, and &, = r * (¢, X n) is constant for each side
whose directional vector e; = dl ; /dl  is chosen in
a counterclockwise direction as the convention of

the contour integral. The vertices composed of the
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panel and the sides are also defined in a counterc-
lockwise order. The field point is at an arbirary
position except the side lines.

It is seen that the integral term for each side
is related to the relative position of the field point
with respect to the side. The integral, as will be
shown, depends only on the coordinates of the two
end points of the side.

In the self-induction case that the field point is
just above or below the panel surface, since n*r =
0 and then the second terni in Eq.(7) vanishes,

we get
o= ~—n f =X dl (1D

Equation (11) is reduced to, just setting ¢ = 0 in
Eq. (10)

_ 1Y 1
o= ==2>b| —dk (12)
G

Equation (12) is also valid for the case that the field
point is on the outside extension plane of the planar
panel.

Next, the corresponding velocity at the filed point
is expressed as, in terms of only the first two integ-
rals in Eq. (3),

1
Ve=——In f A-dl +n><f at  (13)
- 4n -

Rearrange this equation to yield

1 eXr 1
= ——lpd e+ X{—-dl
4 4n{‘,{r(r+e'r) =T c? i)
1
= - bi| ——d
n(n e)lzl Li ok
+ Ze.,.,f —dl}. (14)
i=1 C; r )

A3 A

where ¢., = n X ¢, (and then the unit vectors #,
¢, and e,, are orthogonal each other).

Now we consider the self-induction case that the
field point is just above the panel surface. The first
integral in Eq.(13), which is evidently related to
the solid angle subtended at the field point by the
panel (see Eq.(6)), can be written as

f@'d!g - "'If n-ve (l) dS; = —2n. (15)
¢ $ r

It can be derived by taking ¢ = —n (representing
the approach of the field point toward the upper
surface) and e *r = 0 directly. Then Eq. (14) leads
to

w1 - 1
e = o Dew| —di (16)
= g

On the other hand, when x, approaches toward the
lower surface of the panel, the integral in Eq. (15)
becomes 2r and then the sign of the first term
in Eq. (16) is opposite. If x, is on the (outside) exte-
nsion plane of the planar panel, the first term in
Eq. (16) vanishes. In this case, there is only the
contribution from the second term in Eq. (13) asso-
ciated with the geometrical skewness of the panel.
If we take a field point at the centroid of a rectangu-
lar panel, the second term becomes zero since the
contribution from one side (say, defined in { = 1)
is canceled by that from the opposite side (defined
ini=4).

3. Constant Doublet Distribution

The potential at a field point x, (x, y, 2) induced
by a doublet distribution of unit density p = 1 (re-
call that p is defined as y= —¢) over a planar
panel is given by, taking only the first term from
Eq.(4),
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, 1
o =+—9 A-di an
4n/. ~

Following the same manner as Egs. (7) and (13),
after some arrangement for A given in Eq. (6), we
can write Eq.(17) as

¢iu':— +if ___Q_Xt___.dl
an) rGrter)

—+—1-( . )%b[ -—-l—dl (18
T T e ' ¢ r(r+a) ¢

i=1

In the self-induction case that the field point is
just above the panel, from Eq.(15) for f A-dl,

it follows that ¢

. p
o - L 9
v = 2 (19

It presents the correct behavior of the potential
when a field point approaches the panel surface.
For the case that the field point is on the (outside)
extension of the planar panel, this expression is
replaced by ¢* = 0.
Now the corresponding induced velocity can be
expressed by the line integral taken from Egq. (5)
‘ 1 1
V= ——9¢ v (=) Xd (20)
- 4n/, r
Indeed the planarity assumption is not required
for constant doublet strength distributions. Rewri-
tiong this equation gives
N 1
di] —d (2D
i=z:x - j r ¢

Ve =+

- 4n
where d; = r X ¢,. Equation (20) has been often
used in the lifting line theory and the lifting surface
theory where a discrete vortex lattice may equiva-
letly be replaced by the uniform doublet distribu-
tion of the same vortex strength over the surface
enclosed by the lattice. Unlike the potential, the
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velocity has the continuous behavior (no-jump)
when the field point crosses the panel surface.

4. Closed-Forms of the Basic
Integrals

In the preceding sections, we have expressed
the induced potentials and velocities in forms of
a sum of the more simplified line integral given
in Egs. (10), (14), (18), (21). Since these equations
cover inherently the self-induction cases (see Egs.
(12), (16), (19)), we will derive here closed-forms
of the following line integrals (of four types) invol-
ved in Egs. (10), (14), (18), 21):

1
I = / —dl,
c. r

i

3= /
C:

i

1
12, = —dl,
[c, r+a dh

1
dle, 14, = —di
¢ / A

rir+a)

The line integrals for each side of the polygon
can be treated independently by the geometric pa-
rameters of that side. It is sufficient, therefore, to
consider only one side of the panel, say i = 1, for
the purpose of these evaluations. For simplicity of
the presentation, we drop the subscript 7 used for
identifying the side. We take, without loss of gene-
rality, a local plane coordinate system (x’, z') in the
plane through the field point x, and the side conce-
rned, such that the side lies on the a'-axis, one
end point of the side is at the origin and the integ-
ration path is performed along the positive x'-axis,
as shown in Fig. 1.

The reason that we have chosen the local coordi-
nate system is that, as will shown, the final closed-
forms of the basic integrals would be much more
compact than those expressed in the global coordi-
nate system, even although both forms can produce
identical results.

The end points of the side of length ! are expres-
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Fig. 1: A tocal plane coordinate

sed in two coordinate systems, namely, by @ (x,
91, 21) and Q; (x2, ¥2, 22) in the global coordinate sys-
tem, and by @, (0, 0) and € ¢/, 0) in the local plane
coordinate system. The field point is also defined
by %, (s ¥ 2, and x,(x', 2') respectively. Then
the local coordinates (x’, z’) can be expressed in
terms of the global coordinates as follows -

The vectors @, Q,and G x, are written as, in
the global coordinate system,

Mzz (x: —x)i+ (}’z_yx)i+ (22“21)@
Qix, = (xp —x)i + O —y)i+ (@ —2)k

Applying the relation for the magnitude of the cross
product of the two vectors |, Q, X@x )=
| 1@:)12'], we get 1221 = ¢, X Qux,l. From

the dot product of the two vectors @,Q:* @i%, =

| Q.1 x, it follows that x' = ¢, @ %,

To simply the notation in hte following develop-
ment, we drop the prime(’) in #’ and 2’ and define
the distances between the end points and the field
point by Ri= 1 Qx| =/ *F+7Z and R =R,
x| =/ U=2)T+Z. The integegral forms gi-
ven by Gradshteyn & Ryzhik (1965) (on pages
68, 81, 84) have been used.

1 :
(1) For the integral 11 = [C - dl;, expressing

EE

the integral in terms of the locii coordinates

x and z and introducing an integration variable

¢, we get
/ 1
nN=| —m——————— 4
A\/G:ﬂ"‘zﬂ ¢
R, +1— R, +
:‘n_z_._.i (or m_._’_f__)
Ri—x R;‘(l—x)

This expressions is also valid for the cases
of 2 =0, that is, of that the field point is on
the extension line of the side.

(2) The evaluation of the integral 12 = . r_:_a
dl,, requires more complicated algebraic mani-
pulation and only the final results with a brief
description are presented here. First we trans-
form the integration variable £ into
t=/ G =8+ Z +a for use of an integ-
rable form. Then two cases depending on the
value of x should be considered as follows :

(i) Whenx < Qorx 2 [, we get, after some arra-
ngement with the new integration limits

L=R+aand U=R,+ 4

IZ*]U L a dt
Lty —2at+td— 2
e 2 _ sin ) (2
- a
where

H:\/ 22~ &+ all—x) Ry + axRy)}
2R+ a) (R, + a)

IVZ—-d a(— 2)
or 22 (R1+d) (R2+a) (l*x) R, — xR,

Here for efficient computation, we have used
the trigonometric addition formulae to com-
bine the pair of arcsine functions appeared
in the manipulation.

(ii) When 0 < x < [, the integration interval
[0, 7] is divided inte two parts [0, x] and
[x, {1 to which the previous procedure can

Transactions of SNAK, Vol. 29, No. 1, March 1992
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be applied separately.

_ X ! 1
=+ ) gm0
¢—_Z,"Ta, fn=sin™ 4D} (23)

Equation (23} is valid if the following restric-

=11-

tion that appears in the use of the trigonome-
tric addition formulae (Gradshteyn & Ryzhik,
p. 48) holds, otherwise we take Eq. (22) .

R+ a)?2 (@2 +aR,)?

+ (R, +a)2(2* + aR)?
SZRi+a)?’ R+ a)?

If 2 = 4’ the integral I2 becomes the more simpli-

fied form .
2=1- (—2 + 7%
R) + a Rz + a
1
(3) For the integral 3= | ———dl,, we take
+a)

c rlr

a partial fraction for the integrand (unlessa =
0) and directly use the results in the cases
(1) and (2) :

1,1 1 1
13:_/ (""’”'—)dc:—'(ll“lz)
alo r rta a

But if @ = 0, a direct integration yields

! 1
3= —————d
/o k—E&)2+ 2 :
1 I—x
= = (arctan — + arctan —)
] 2| 2|

Furthermore if ¢ = 0 and z = 0, then

13:/1—1" dE = !
S R "

1
(4) The integral 14 =/ ;dl;, can also be per-
¢
formed directly, yielding
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[
1= [ et
1 l—x+x}

==

F4 R, R?n

If z=0, it is replaced by

/ 1
4= d
ﬁu-:ls ¢
1 1

1
= 4 - — ——
2{(1—x)2 xz} for x>1
REN. =1} for x>0
2\ g-n2 g TF>

When the inverse trigonometric functions are
implemented in the computational algorithm, their
values may be evaluated in the inverval [~n,/2,
n/ 2] without considering the separate arguments
of the functions.

5. Extension to Linear Distributions

In this section the preceding analyses are exten-
ded to include a linear distribution of sources and
doublets over a planar panel. In order to determine
the distribution shape uniquely, it is enougt to take
only three points (that are not collinear) of a poly-
gon. We consider therefore a triangular panel of
a linear source distribution herein (the following
procedure can be applied similarly to the doublet
distribution). A gradient form of the linear varying
source strength distributed on the panel is speci-
ried as

Vo=ai +Bj +vk

The coofficients a, B and y are determined from
the singularity strength values at the vertices, by
using the fact that the vector V o is parallel to the
panel. Define the source strengths at the vertices
by o, G = 1, 2, 3) and the vertex positions by (x,
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¥i, z). Then we can form a linear equation system

for a, B and v :
Gi+1 — O;
Vorey=—
2 1
— a @1 x) B (s —y) Ty @ivi—2)
ll
=123

Here recall that the vertices and the sides are defi-
ned in a counterclockwise sense and the index 4
corresponds to 1 by the cyclic convention. By the

Cramer’s rule, a, p and y are determined :

a = det (6:—Civs, Yi™¥ies, Zi— 206 ) D
B = det (xi—xi+1, 6:— Gix1, Z— 2+ )/
vy = det (i i+, ¥i—Yies G Cin)/ D

where det(---) denotes the determinant of a matrix
and A = det(x,—Xi+1, ¥i—Yyi+1 6i—Gi+1). Now in or-
der to derive closed-forms for Eqs.(2) through (5)
including the linear variation terms, we introduce
first the following basic integrals to be evaluated
additionally :

n= /C S

_ g
Jz,-—/q &

_ : [z
3= /c, rr+a) % J /c,- » %

J5; 2/ rd &, J6: 2/ In(r+a) d€
[ C;

Since we can superpose the contribution of the
associated line integrals for each side like the cons-
tant distribution cases, we drop the subscript i for
simple notation. The evaluation of these integrals
is considerably straightforward and only the final
results are presented here, without explicit mani-
pulation, with using the basic integrals obatined

in the previous section :

ARA

J1=R2—R1+xll

R, +
12=R— R — aln —% + 112
R, +a
R2+ll
3=In—+ xI3
J nR1+a *
J4—l~i+ 14
R R, *

1
5= 5 {U—x)R + xR, + 211}

J6 = (A—x)In(R;, + a) + xIn(R, + a) —I+all
+ (@ —-a)I3

The closed-forms of Eqs.(2) through (5) for the
potentials and velocities due to the linear distribu-
tions can be expressed in terms of the basic integ-
rals in a form analogous to those of the constant
distibutions, after recovering the index 7 for the
side and vertex :

1%
0" = —:Z bi (6,12, + Vo ey, J2)

i=1
+ Vo € mi 06, - a]5,-) (24)
L
Ve = —;Z [nn-e){bi (o 13 + Vo e, )3)
i=1
+ v (o2 e_ml .161} + €lu1 (oi IL + VG 'gliJli)

+ Vob 2] (25

. 1 N
ov = +;;<r_z-e_) D {b (13 + Ve, J3)

+ v p'e_.,,' JG.} (26)

1&
Vo= 4o Y ld i+ Vacenld)

i=1

+Vume)b 13, —nVpre,Il} ¢1)]

Neglecting the terms involving V o, we can of cou-
rse reduce these expressions to the results for the
case of constant singularity distributions derived
already in the preceding sections. It confirms easily
that the normal component of V' has the same
form as ¢" except notation of the singularity.
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6. Test Calculations for Constant Distri-
butions

The present analysis was programmed for practi-
cal implementation (Suh (1990b)) and was verified
by comparing the induced potedtials and velocities
obtained by the present method with those by the
method of Newman. The comparison was based
on the computer output for several cases of the
constant singularity distributions. It was found that
the resultant values are same up to the significant
figures allowed by truncation or round-off error
of a computer (but the details are not presented
here). Thus only in the following extreme cases,

comparison of analytic integration with numerical

integration is provided herein to check a sensitivity -

of the calculation. A planar rectangular element of

12X1 (i.e., aspect ratio is 12) is taken for the test

23

calculations. It may be assumed that the element
is in the plane z = 0 with the four vertices at (0,0,0),
(1,0,0), (1,12,0), (0,12,0), respectively. We take va-
rious field points in the extreme vicinity of the
element surface or one vertes. Their coordinates
are, with alphabetical labelling, A (0.5,6.0,+0.0), B
(0.5,6.0,+0.00001), € (0.5,6.0,—0.00001), D (0.0,—0Q.
00001, 0.0), E (0.0,0.0,+0.00001), F (0.0,0.0,—0.000
01). The points A, B and C are, respectively, on,
just above and below of the centroid of the element
and D, E and F are very near the origin. The cons-
tant densities of cource and doublet distributions
are taken with 1, (ie, 6 = 1, u = 1).

First we will compare numerical integrations and
analytical evaluations of the basic integrals descri-
bed in section 4. At the field points A, D and F,
the values of the integrals for each side are compa-
red in Tables 1,2 and 3, respectively. With and Apo-

Table 1. Comparison of the basic integrals by analytic and numerical calculation at point A (0.5, 6.0, +0.0)
. Gaussian-Quadrature Points, N = .
Side 2 L 100 l 00 l 5500 Analytic

1 .1665E+ 00 .1665E+ 00 .1665E + 00 .1665E + 00 .1665E + 00
1 2 6275E+01 .6360E +01 .B6360E +01 .6360E + 01 .6360E+01
./7 4% 3 .1665E+OO .1665E + 00 .1665E +00 1665 + 00 .1665E + 00

4 6275E+01 .6360E +01 6360E + 01 .6360E+ 01 6360E+01 -
1 .1665E+ 00 .1665E + 00 .1665E +00 .1665E + 00 .1665E + 00
1 2 6275E+01 .6360E+01 .6360E+ 01 6360E+01 .6360E+01
/ (r+a) % 3 .1665E + 00 .1665E + 00 .1665E + 00 .1665E + 00 .1665E + 00
4 6275E+01 .6360E + 01 B360E + 01 6360E+ 01 .6360E+01
1 2771E—-01 2771E-01 2771E-01 2771E—01 2771E—01
1 2 .5550E +01 5951E+01 .5951E+01 .5951E+01 .5951E+01
/T(T+a) % 3 2TTE—-01 2771E—01 2771E—-01 2771E—01 2771E—-01
4 5550E+01 .5951E +01 5951E+01 .5951E+01 .5951E+01
1 4614E—02 AB14E—02 4614E—-02 A4614E—02 4614E—02
/ l d@ 2 .6688E + 01 7972E+01 7972E+01 7972E+01 T972E+01
r 3 4614E-—02 4614E—02 4614E—02 4614E—02 4614E—02
4 6688E + 01 7972E+01 .7972E+01 .7972E+01 L7972E+01
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Table 2. Comparison of the basic integrals by analytic and numerical

(0.0. -0.00001, 0.0}

s kk

calculation at point D

]
Gaussian-Quadrature Points, N =
Side Analytic
20 100 50 | 2500
1 7195E+01 1037E+02 1224E +02 1221E+02 1221E+02
/i " 2 3180E+01 3180E+01 J3180E+01 3180E+ 01 .3180E+01
r 3 .8324E—-01 .8324E—01 .8324E—01 8324E-01 8324E—01
4 .7195E+01 .1036E+02 1322E+02 .1400E+ 02 .1400E + 02
1 .7195E+ 01 .1037E+02 1224E+02 J1221E+02 J1221E+02
/ 1 " 2 3180E+01 3180E+01 3180E+01 3180E+01 .3180E+01
(r+a) 3 8324E—-01 .8324E-01 8324E—01 8324E—01 .8324E—-01
4 7195E+01 .1036E+02 1322E+02 1400E+ 02 .1400E+02
1 .8400E+ 03 2011E+05 .1636E +- 06 1571E+06 .1571E+06
/ 1 g 2 .1488E+01 .1488E +01 .1488E+01 .1488E+01 .1488E+01
r(r+a) 3 6928E—02 .6928E —02 6928E—02 6928E— 02 .6928E — 02
4 .6997E + 02 .1666E + 04 .3280E+05 .9971E+05 .1000E + 06
1 2211E+06 .1266E + 09 .1084E+11 1000E+11 1000E+11
[ l p 2 9965E + 00 .9965E + 00 .9965E + 00 9965E + 00 .9965E + 00
r 3 .5767E—03 .5767E—03 5767E—03 5767E—03 5767E—03
4 .1535E+04 .8705E+ 06 .3660E+ 09 4927E+10 .5000E+10

llo Workstation DN 10000, high precision was used
in Fortran program. The influences of the basic
integrals at the field points by the respective sides
of the element are listed. In the tables, the side
1 denotes the line between the vertices (0,0,0) and

(1,0,0) and the other sides are numbered in counte-

rclockwise order in a similar way. In the numerical
calculations, the Gaussian quadratures with various
quadrature-base points were used to show conver-
gence of numerical integration. Some loss in accu-
racy of numerical integrations appears when the
field point is very close from the sides or the verti-
ces, and its amount depends on the number of the
quadrature-base points used. ‘

As expected, the difference between the analyti-

cal results and the numerical results increases with

the order of r in the denominator of the integrand,
and decreases with the distance of a field point
from the sides (or vertices). It is seen that for a
field point having a numerically singular behavior
in the line integral, many quadrature-base points,
even up to 2500, is required to reach the same
order as the analytical evalutions. It implies that
a numerical integration results in a large amount
of computer time undesirably.

The induced velocities and potentials at the sele-
cted field points are compared in Tables 4 through
9 in the same fashion in order to confirm the afore-
mentioned advantages in computation efficiency.
In Tables 4,5 and 6, it is observed that the analytic
integration gives the correct singular behavior as
the field point approach the centroid of the panel.
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Table 3. Comparison of tﬁe basic integrals by analytic and numerical calculation at point E

{0.0. 0.0, +0. 00001)

Gaussian-Quadrature Points, N = .
Side Analytic
20 | w0 50 | 2500
1 J195E+01 | .1037E+02 | .1224E+02 | .1221E4+02 | .1221E+02
1 2 3180E+01 3180E+01 3180E+01 3180E+01 .3180E+01
;% 3 .8324E—01 .8324E-01 8324E—01 8324E-01 .8324E—01
4 7195E+01 1037E+02 .1356E + 02 1469E + 02 .1469E +02
1 .7187E+01 .1018E+02 1121E+02 J1121E+02 1121E+02
1 2 3180E + 01 3180E+01 3180E+01 3180E+01 .3180E+01
(r+a) % 3 .8324E—-01 8324E—-01 8324E—01 8324E—01 8324E—01
4 J7195E+01 .1036E+02 .1320E + 02 1369E + 02 .1369E + 02
1 8378E+03 .1893E+05 .1025E+06 .1000E+ 06 .1000E +06
1 2 .1488E+01 .1488E +01 .1488E +01 .1488E+ 01 .1488E+01
/ rir+a) 4 3 .6928E— 02 .6928E — 02 6928E—02 6928E—02 6928E—02.
4 .6998E +02 1674E +04 .3636E+05 9987LE + 05 .1000E + 06
1 2211E+06 .1266E +09 .1084E+11 .1000E+11 .1000E+11
/ l p 2 B965E + 00 9965E + 00 9965E+ 00 9965E+ 00 .9965E +00
r 3 5767E—03 5767E—03 .5767E—03 S5767E—03 S5767E—03
4 .1536E + 04 .8856E + 06 ”4&_.528412 +09 J1004E+11 J000E+11
Table 4. Comparison of potentials and velocities by analytic and numerical calculation at point A
{0.5, 6.0, +0.0}
éégggién-Quadrature Points,wﬁ_: .
20 100 500 2500 Analytic
¢ -0.6583E + 00 -0.6650E + 00 -0.6650E + 00 -0.6650E + 00 -0.6650E + 00
V,= 0.0000E+00 0.0000E + 00 0.0000E+ 00 0.0000E + 00 0.0000E+00
Vv, 0.0000E + 00 0.0000E + 00 0.0000E+ 00 0.0000E + 00 0.0000E + 00
V., 0.4681E +00 0.5000E + 00 0.5000E + 00 0.5000E + 00 0.5000E+ 00
o« -0.4681E+00 -0.5000E + 00 -0.5000E + 00 -0.5000E+ 00 -0.5000E + 00
v, 0.0000E + 00 0.0000E + 00 0.0000E + 00 0.0000E +00 0.0000E + 00
v, 0.0000E + 00 0.0000E+00 | 00000E-+00 0.0000E +00 0.0000E +00
V.» 0.5366E + 00 06'}8?1*; + O() L (}7638813 + 00 0.6388E + O()W L _03188[2 +00
It is found that the values of V>, ¢™, ¢, and red with those obtained with more number of the
V. obtained by the numerical integration with 20 guadrature points. These features are profound
quadrature points (N = 20) are inaccurated compa- when the field points are near the vertex as shown
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Table 5. Comparison of potentials and velocities by analytic and numerical calculation at point B
(0.5, 6.0, +0.00001)
Gaussian-Quadrature Points, N = .
Analytic
20 100 500 2500
o -0.6583E + 00 -0.6650E + 00 -0.6650E + 00 -0.6650E + 00 -0.6650E +00
v, 0.0000E + 00 0.0000E+00 0.0000E + 00 0.0000E +00 0.0000E+00
y,e 0.0000E +00 0.0000E +00 0.0000E + 00 0.0000E+ 00 0.0000E + 00
v,” 0.4681E+00 0.5000E + 00 0.5000E + 00 0.5000E +00 0.5000E + 00
¢ W -0.4681E+00 -0.5000E + 00 -0.5000E+00 -0.5000E + 00 -0.5000E+00
V. 0.5371E—21 0.2791E—22 0.5166E — 21 0.3339E—21 0.2264E-21
v, -0.5143E—25 0.2006E — 00 0.2288E —25 0.2600E—24 0.2308E—24
V.. 0.5366E + 00 0.6388E+ 00 0.6388E + 00 0.6388E + 00 0.6388E+00
Table 6. Comparison of potentials and velocities by analytic and numerical calculation at point C
(0.5, 6.0, -0.00001)
Gaussian-Quadrature Points, N =
Analytic
20 ] 100 500 2500
o -0.6583E + 00 -0.6650E+ 00 -0.6650E + 00 -0.6650E+00 -0.6650E + 00
V. 0.0000E + 00 0.0000E +00 0.0000E+00 0.0000E+00 0.0000E +00
v, 0.0000E + 00 0.0000E + 00 0.0000E +00 0.0000E+00 0.0000E + 00
V.. -0.4681E + 00 -0.5000E + 00 -0.5000E + 00 -0.5000E + 00 -0.5000E + 00
o w 0.4681E+00 0.5000E + 00 0.5000E + 00 0.5000E+00 0.5000E+ 00
v, -0.5371E—21 -0.2791E—22 -0.5166E —~ 21 -0.3339E—21 -0.2264E —21
v, 0.5143E—25 -0.2006E—25 -0.2288E—25 -0.2600E —24 -0.2309E—24
V.w 0.5366E + 00 0.6388E+00 0.6388E+ 00 0.6388E+00 0.6388E+00
Table 7. Comparison of potentials and velocities by analytic and numerical calculation at point D
(0.0, -0. 00001, 0.0}
Gaussian-Quadrature Points, N =
Analytic
20 | 100 500 2500
¢ -0.3325E +00 -0.3325E+00 -0.3325E+ 00 -0.3325E+00 -0.3325E+00
Ve -0.3195E+ 00 -05712E+00 L_-0.7986E +00 -0.8608E + 00 -0.8609E +00
v, -0.5660E + 00 -0.8185E+00 -0.9672E+ 00 -0.9647E+00 -0.9647E+00
V.o 0.1243E+00 0.1090E + 00 -0.5212E—-02 -0.2325E—-10 0.4199E—17
| o -0.1243E+00 -0.1090E+ 00 0.5212E—02 0.2325E—10 04199E—17
V,w 0.0000E + 00 0.0000E+00 0.0000E + 00 0.0000E+00 0.0000E+00
Vv,w 0.0000E + 00 0.0000E + 00 0.0000E+00 0.0000E + 00 0.0000E+00
A -0.9611E—01 -0.1007E+03 -0.8628E + 04 -0.7958E+04 -0.7958E+ 04
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Table 8. Comparison of potentials and velocities by analytic and numerical calculation at point E
(0.0, 0.0. -0.00001)
Gaussian-Quadrature Points, N = .
Analytic
20 100 | 500 2500
¢ e -0.3325E+ 00 -0.3325E + 00 -0.3325E+00 -0.3325E +00 -0.3325E+00
v, -0.3196E + 00 -0.5726E+ 00 -0.8259E + 00 -0.9159E+00 -0.9160E +00
v, -0.5660E + 00 -0.8185E+ 00 -0.9672E +00 -0.9647E + 00 -0.9647E+00
70 0.1250E + 00 0.1250E + 00 0.1250E+ 00 0.1250E+00 0.1250E +00
oW -0.1250E+ 00 -0.1250E+ 00 -0.1250E + 00 -0.1250E + 00 -0.1250E+00
v, -0.1221E—02 -0.7047E+00 -0.4205E+03 -0.7987E+ 04 -0.7958E + 04
v, -0.1760E + 00 -0.1008E+ 03 -0.8628E + 04 -0.7958E+ 04 -0.7958E +04
v, 0.7985E—01 0.7985E —01 0.7985E— 01 0.7985E—01 0.7985E~01
Table 9. Comparison of potentials and velocities by analytic and numerical calculation at point F

(0.0, 0.0. -0.00001)

Gaussian-Quadrature Points, N = .
Analytic
20 100 500 2500
R -0.3325E+00 . -0.3325E+ 00 -0.3325E + 00 -0.3325E + 00 -0.3325E +00
v, -0.3196E + 00 -0.5726E+00 -0.8259E + 00 -0.9159E + 00 -0.9160E + 00
v, -0.5660E + 00 -0.8185E+ 00 -0.9672E +00 -0.9647E + 00 -0.9647E +00
V., -0.1250E +00 -0.1250E + 00 -0.1250E + 00 -0.1250E + 00 -0.1250E +00
oW 0.1250E+00 0.1250E +00 0.1250E— 00 0.1250E +00 0.1250E + 00
V.» 0.1221E—02 0.7047E + 00 0.4205E+03 0.7987E+04 0.7958E + 04
v, 0.1760E + 00 0.1008+03 0.8628E + 04 0.7958E + 04 0.7958E+ 04
V> 0.7985E —- 01 0.7985E — 01 0.7985E—01 0.7985E—01 0.7985E — 01

in Tables 7,8 and 9 and appear even for the cases
of the other quadrature points. Much more number
of the quadrature points are required to achieve

considerably accurate values.

7. Concluding Remarks

The closed-forms (Egs. (24) through (27)) provi-
ded in section 5 (in particular for the induced velo-
cities) are reatively much simpler than those given
by Webster (1975) and are more explicit than those
given by Newman (1986), although it is very diffi-

KBERRER TR H294 158 19924 31

cult to show precisely the identities which exist
among their expressions and the present ones be-
cause of the difference of the local coordinate sys-
tems used. These explicit simple expressions (even
for the linear distributions) may reduce the compu-
ter time significantly for formation of a set of simul-
taneous linear equations. In the potential-based pa-
nel methods, for example, the calculated potentials
form the fundamental matrix elements of the linear
system to be soved and thus such a formation is
the primary factor of the computer time. Also the

present expressions may be used in complex-flow
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problems(in some of which we should often put
a careful effort for field points located inevitably
in the extreme vicinity of the panel edges) to find
accurately, for example, (i) a convection velocity
of circulation values at the wake sheet of a lifting
body, (ii) potential and velocity distributions at a
hull surface induced by propellers in propelier-hull
interaction problems, and and (iii) induced potential
and velocity in mutual interaction problems such
as ducted propellers and compound propellers.
We found the newly useful relation of Eq. (9)
which can be applied directly to calculation of the
volumetric integral of vorticity distributions given
by the Biot-Savart integral. This integral would of
ten require to be evaluated when the vorticity-velo-
city formulation is used in inviscid rotational flow
problems involving shear-flow interaction. For pie-
cewise constant vorticity distribution within a volu-
metric element with planar faces, we can first tran-
sform the volume integral the surface integrals on
the enclosed faces by using Gauss theorem. The
integrand of the transformed surface integrals be-
comes 1/r and then Eq. (9) (with e=+n) can be
used to tiansform each surface integral into the

line integrals expressed a form analogous to Eq.(8).
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