Speaker Recognition Using Dynamic Time Variation fo Orthogonal Parameters

직교인자의 동적 특성을 이용한 화자인식

  • Published : 1992.09.01

Abstract

Recently, many researchers have found that the speaker recognition rate is high when they perform the speaker recognition using statistical processing method of orthogonal parameter, which are derived from the analysis of speech signal and contain much of the speaker's identity. This method, however, has problems caused by vocalization speed or time varying feature of speed. Thus, to solve these problems, this paper proposes two methods of speaker recognition which combine DTW algorithm with the method using orthogonal parameters extracted from $Karthumem-Lo\'{e}ve$ Transform method which applies orthogonal parameters as feature vector to ETW algorithm and the other is the method which applies orthogonal parameters to the optimal path. In addition, we compare speaker recognition rate obtained from the proposed two method with that from the conventional method of statistical process of orthogonal parameters. Orthogonal parameters used in this paper are derived from both linear prediction coefficients and partial correlation coefficients of speech signal.

음성신호의 분석으로부터 유도되는 직교인자는 화자의 개인성을 많이 포함하고 있으므로, 최근 많은 연구자들이 이것을 이용한 통계적 처리방법으로 화자인식을 수행하여 좋은 화자인식율을 얻고 있다. 그러나 이러한 방법들은 아직 음성의 발성속도나 시간적 동특성으로 인해서 발생하는 문제점을 갖고 있다. 따라서 본 논문에서는 이러한 문제점을 해결하기 위해서 음성분석의 한 방법인 Karhunen-Loeve 직교 변환에 의해서 추출한 직교인자를 화자인식에 이용하는 방법에 DTW법을 결합하는 두가지 기법을 제안하였다. 첫째는 직교인자를 특징벡터로 하여 DTW법을 적용하고, 둘째는 직교인자를 최적경로에 이용하는 기법이다. 이들 두 기법에 의한 화자인식 결과와 직교인자의 통계적 처리에 의한 종래의 화자인식방법의 결과를 비교하였다. 사용된 직교인자는 음성신호에서 선형예측계수와 부분자기상관계수를 각각 추출하여 위의 화자인식방법에 각각 적용하였다. 이를 실험한 결과, 선형예측계수로 부터 얻은 직교인자를 최적경로를 이용한 기법에 적용하는 경우 88.6%의 가장 높은 인식율을 얻었다.

Keywords