Object Recognition using Neural Network

신경회로망을 이용한 물체인식

  • 김형근 (명지대학교 전자공학과) ;
  • 박승규 (전북산업대학 전자계산학과) ;
  • 송철 (조선대학교 공과대학 컴퓨터공학과) ;
  • 최갑석 (명지대학교 전자공학과)
  • Published : 1992.03.01

Abstract

In this paper object recognition using neural network is studied. The recognition is accomplished by matching linear line segments which are formed by local features extracted from the curvature points. Since there is similarities among segments. The boundary of models is not distinct in feature space. Due to these indistinctness the ambiguity of recognition occurs, and the recognition rate becomes degraded according to the limitation of boundary decision capability of neural network for similar of features. Object recognition and to improve recognition rate. Local features are used to represent the object effectively. The validity of the object recognition system is demonstrated by experiments for the occluded and varied objects.

본 논문은 신경회로망을 이용한 물체인식에 관한 연구로써, 인식은 물체의 경계점으로부터 추출된 국부 특징들로 구성되는 각 선형선소들간의 매칭에 의해 이루어진다. 그러나 추출된 특징들은 물체를 구성하는 선형선소들간의 유사성 때문에 특징 공간상에서 다른 모델과의 경계가 불분명하게 되므로 인식의 애매성이 발생하고, 특징의 유사성에 기인한 신경 회로망의 경계분리능력의 한계에 따라 인식률의 저하를 가져온다. 따라서, 본 논문에서는 인식의 애매성을 해소하고, 인식율의 향상을 도모할 수 있도록 2개의 신경회로망을 다단결합한 물체인식 시스템을 구성하였으며, 물체를 효과적으로 기술할 수 있는 국부 특징량을 사용하였다. 실험을 통하여 구성된 물체인식 시스템의 타당성을 확인하였으며, 중복 물체 및 변형된 물체에 적용하여 그 결과를 고찰하였다.

Keywords