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ABSTRACT

Samples are often found to be too heterogeneous to be explained by a
one-parameter family of models in the sense that the implicit mean-variance
relationship in such a family is violated by the data. This phenomenon is
often called over-dispersion. The most frequently used method in dealing
with over-dispersion is to mix a one-parameter family creating a two pa-
rameter marginal mixture family for the data. In this paper, we investigate
performance of estimators such as maximum likelihood estiamtor, method of
moment estimator, and maximum quasi-likelihood estimator in negative bino-
mial and beta-binomial distribution. Simulations are done for various mean
parameter and dispersion parameter in both distributions, and we conclude
that the moment estimators are very superior in the sense of bias and asymp-
totic relative efficiency.
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1. INTRODUCTION

Analysis of data via a single parameter of family of distributions implies in par-
ticular that the variance is determined by the mean. Familiar examples are the
Poisson, binomial and exponential distributions. However, samples are often found
to be too heterogeneous to be explained by a one-parameter family of models in the
sense that the implicit mean-variance relationship in such a family is violated by
the data; the sample variance is large compared with that predicted by inserting the
sample mean into the mean-variance relationship. This phenomenon is often called
over-dispersion. The most frequently used method in dealing with over-dispersion
is to mix a one-parameter family creating a two-parameter marginal mixture family
for the data. Morris (1982,1983) defined natural exponential family (NEF) by mix-
ing one-parameter exponential family with two-parameter conjugate mixture (CM)
distribution. Cox (1983) noted that for modest amounts of over-dispersion a full
specification of the mixing distribution was unnecessary, but its mean and vari-
ance are needed. To model over-dispersion, Efron (1986) creates so called double
exponential family, and Lindsay (1986) addresses the slightly different question of
whether mixing a one-parameter exponential family can produce a two-parameter
exponential family. Jorgensen (1987) extended the one-parameter exponential fam-
ily to a two-parameter class of distributions so called an exponential dispersion
model. Also, Gelfand and Dalal (1990) suggested two-parameter exponential family
containing Lindsay’s as a special case, and recommend to use weighted least squares
estimate for the over-dispersion parameter.

In this paper, we adopt negative-binomial distribution and beta-binom-ial distri-
bution as models for over-dispersed Poisson and binomial data, respectively, and we
study the asymptotic relative efficiencies (ARE) of the maximum quasi-likelihood
(McCullagh and Nelder, 1983; Nelder and Pregibon, 1987; McCullagh and Nelder,
1990) estimator (QL) and the method of moment estimator (MM) with respect to
the maximum likelihood estimator (ML) of mean parameter p and dispersion pa-
rameter ¢. Kleinman (1973) studied the ARE of the weighted moment estimator
with respect to least squares estimator for over-dispersed binomial data. The ARE
of QL with respect to ML of unknown parameter § in over-dispersed model has
been studied by Firth (1987), and the ARE of QL with respect to ML of u in neg-
ative binomial and beta-binomial was discussed by Hill and Tsai (1988) under the
assumption of the dispersion parameter ¢ being known.

Section 2 describes Fisher infori.iation matrices of (g, ¢) for the ML, QL, and
MM extending the results of Hill and Tsai (1988). The AREs of QL and MM with

respect to ML are numerically obtained for various g’s and ¢’s in Section 3.
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2. ESTIMATION OF PARAMETERS AND
ASYMPTOTIC VARIANCES

We assume that, conditional on the sampling means 8;, the data y; have indepen-
dent distributions belonging to a natural exponential family (NEF) with quadratic
variance function (Morris:1982,1983), and that the means §; are independent with
conjugate mixture (CM) distributions. Let [g, V(g)] denote a distribution with
mean g and variance function V(u).

2.1 Gamma-Poisson mixtures

The data for this example, given in Table 1, is Accident data (Seal, 1969) con-
sisting of observed counts of accidents in a year for 9461 Belgian drivers. By taking
on initial Poisson distribution, nominal variance is y = .214 with sample variance

s? = .289 suggesting over-dispersion. These data have been analyzed by Lindsay

(1986) and Gelfand and Dalal (1990). To define the model for these data,

y|6 ~ Poisson(8) = NEF[9, 6],

6~T (§¢) = CM[y, ¢p),
V(e)=n
and

I

—, —— | = margiu, (1 + 2.1

paan ¢) glu, (1+ )l (2.1)
where I'(a, 3) denotes a gamma distribution with parameters a and 3, and NB(a, 3)
denotes a negative binomial distribution with probability function

y~NB(

a+y-—1 o
Table 1. Accident data
y 0 1 2 3 4 5 6 7
count | 7840 1317 239 42 14 4 4 1

The marginal log-likelihood corresponding to (2.1) is
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Zlog( +]—1) —alog(l+¢)+ylog<lf¢)

The maximum likelihood estimates fip;r and d;ML can be calculated by using the
profile likelihood approach. For the expected Fisher information matrix, we find
after a little effort that

llleh—g{z—l‘] f: Z[#‘i’ J_l)¢]

L 8#2 y=0

l —E-— azl}—i zy: - D[+ —1)¢]_ lo(1+¢) “”“1“_

=B gug) = P LU - D+ P (1 + 9)
_ -_321 . > u+2(—-1)¢ 2p 7

l)=F G ] = ,;p(y ;{[ﬂ'*' ¢]2}+ log(1 +¢) — ¢2(1+¢).

The extended quasi-likelihood function becomes

a(p, @) = {(yilogp — u) — (yilogy: — vi)} — —log(l + )

1
1+¢
and the maximum quasi-likelihood estimates fig; and dJQL are given by

fiqr =9,

$or =13 di—1
where g is sample mean of y’s and

di = =2 {(yilog i — p) — (yilogyi — i)} .
An adjusted version of éQL can be derived by using

E(d)~(1+¢)(1+0b) (2.2)
where

b= (1+6)/6x (23)
is ‘a Bartlett adjustment. Let &AQL be an estimator satisfying (2.2), i.e., qASAQL =

—(3a + 1)+ {32034 + 2d)}'/2. Note that iterations are not needed in calculating
for and ¢gr. For the asymptotic variance of figr, it is straightforward that
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nVar(fgr) = (1 + ¢)u.

As suggested by McCullagh and Nelder (1990), however, adjustment should be made
for the variance of ¢g, in such a way that

nVar(dor) ~ 2(1 + ¢)*(1 + b)?

where b is defined in (2.3). )
The method of moment estimates fipsas and épsps are given by equating

H=1Y,
(14 @) = s’

where s? denotes sample variance of y’s. Therefore,
fearns = 4,

2 _1.

dvum =%

To get the asymptotic variances for the moment estimates, note that (Serfling, 1980,

p.72)
Y- i L 0 K2 13
‘/ﬁ(sz—m ) %N((O ) ’ ( Bs =it ))

= F {(} — ,u)k] .

where

Explicit forms for p; are easily obtained by noting that (McCullagh and Nelder,
1990, p.350)

Kry1 = ":r,"'% r>2
where &, is the r-th cumulant. Hence, we have
p2 = (1 + @)p,

ps = (14 ¢)2p.
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fa = Kq + 3897 = p(1 + ¢)° 4 3p*(1 + ¢)?

and the asymptotic variances for jiarps and qASMM are easily obtained by the multi-
variate delta method, i.e.,

nVar(imm) = (1 + ¢)u,
nVar(<Z>MM) =2(1 4+ ¢)%

Hence,

ARE(figr, firmr) = 1,
- N -2
ARE(¢qL, dpm) = (1 + %) .
2.2 Beta-Binomial mixture

The data for the beta-binomial mixture could be Sibship data (Sokal and Rohlf,
1973) in Table 2, which has been analyzed by Gelfand and Dalal (1990), consist
of the frequency of males in 6115(n) sibships of size 12(m) given the probability
of success 6, the observed response rate y is assumed to follow binomial distribu-
tion, 6 has a beta distribution, and let r = my be observed frequency. Under a
blnomlal distribution, nominal variance is mé(1 — 0) = 2.9956 with sample variance
s? = 3.4886 suggesting over-dispersion. In symbols,

0(1 —0)]

m

y|0 ~ iBinomial(m,()) = NEF [0,
m
0 ~ Beta(yy, (1 — p)) = CM{p, dpu(1 — p)]

where ¢ = 1/¢ — 1, and the variance function in this situation is V(g) = u(1 — ).
Then, the marginal distribution of y becomes

1
y ~ —BB(m, s, (1 - ) = margly, (1 — )]

where BB(m, a, 3) denotes a beta-binomial random variable with probability func-
tion

(r) = (m) F'Na+ B (r+a)l(m+8—r)
P =1 (a)L(B)T(m+a+p8)

and w = m/{1 + (m — 1)¢}. Hence, ¢ > 0 implies over-dispersion.

r=0,1,...,m
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Table 2. Sibship data
r 0 1 2 3 4 ) 6 7 8 9 10 11 12
count |3 24 104 286 670 1033 1343 1112 829 478 181 45 7

The marginal log-likelihood is given by

Zlog (Yu+j—1)+ Z log{¥(1 —p) +j— 1} = D log(¥ +j — 1).
7=1 7=1

The ML’s fiprr and ¢ML are obtained easily by the functional invariance property
and similar method used in Section 2.1. The expected Fisher information matrix

for (i, ¢) can be calculated by using

0%l _ 9%l %
oudé ~ dudy ¢
and
FL_ ] (o
a¢2 B a'jﬂ ¢=L—1 a¢
¢

then, we have

£ aal} - [i“{z ‘“‘ﬂ—1)‘2—"1_’(«/)(1—;1)“_1)‘2}

L rT=

A 1|& r j—1 T j—1
Efa;u%] [sz {§(¢lt+j—1)2 -1(¢(1—u)+j—1)2}]

Note that ® is replaced by 1/¢ — 1 in the above expressions.
The extended quasi-likelihood function in this mixture is

: 1
alu,8) = w{ylog (—1 . ) + log(1 — 1) — y log (—y ) — log(1 — y)} + 3 logw
— i 11—y 2

and the QL’s figr and <;A$QL calculated as
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ﬂQL =Y,
1

doL = {m%Zdi-—l}.

m—1

And ¢4qr can be defined as an estimators satisfying (2.2). In this case, the Bartlett
adjustment factor is

_ 11— p) 1+ (m=1)4
6m  p(l—p) m '

Also, the quasi-expected Fisher information matrix is

1 —
n Var([zQL) = u,
w

A 2 y
nVar(qSQL):( n ) -2—2(1+b)2.

m—1 w

The MM’s of u and ¢ are given by equating
H=1Y,
1 2
—p(l = p)(1+(m—1)¢)=s
m

and, hence,
/A‘MM = gv
. 1 ms?
= —-1.

MM m—l{g(l—gj) }

The asymptotic variances of jipas and QASMM can be obtained by the same method
done in Section 2.1. Here, we have,

w2 = p(l — p)/w,
s = (1 = p)(1 = 2p) /0.
g = p(1 — )1 — 6+ 6p%) /w4 32 (1 — p)?/w0?

and therefore,
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n Var(fisar) ~ p(1 — p)/w,

nVar(dmm) ~ ( & >2 202—2 (1 — -1—)

m—1 w

and
ARE(forL, fimm) =1,

- - _ _ -2
ARE(¢qr, dmn) = m—m—1(1 — ¢ {1 n 6_16{1 ¥ (”’:n g1 u(l;(i ﬂ)ﬂ)}

3. SIMULATION

The ARE’s of QL with respect to MM are given by simple formula. In fact, they
are equal to 1 except ARE(¢qL,darar). However, the ARE’'s ML with respect to
QL or MM should be calculated based on the Fisher information matrix for each
i and ¢. Also, we must note that the off-diagonal term E[—0%1/0ud¢] should be
close to zero so that we can use the inverse of the diagonal term as the asymptotic
variance. Fortunately, the off-diagonal term in the Fisher information matrix was
close to zero for various g and ¢.

3.1 Gamma-Poisson mixture

For fixed g and ¢, probabilities of negative binomial distribution are calculated.
We generate a set of random numbers from that distribution using IMSL(GGDA).
Given the data set, ML, QL, and MM of yx and ¢ are calculated, and ARE’s of
ML with respect to QL(MM) are obtained. We replicate this process 100 times and
average them. Simulations are done for ¢ = .2,.5,1,2, and 5 and ¢ = .1(.1).5. Table
3 list bias of ¢ and Table 4 list ARE’s (each row corresponds to ML, QL, and MM
of p and ¢, respectively).

For the bias E(é — 0), three estimators (in fact, figr = fiarar) of p are quite
similar and correct. In fact, they are unbiased, and we omit them from the table.
(JASML and d;MM are almost equal and good, however, qASQL underestimate when g < 1
and overestimate when u > 1. Also, dA)AQL always underestimate.

For the ARE of i, ML is best in all cases. For fixed y, ARE(fiarm, finr) decreases
as ¢ increases, and for fixed ¢, ARE(fiprar, fimrr) increases as p increases. For the
ARE of ¢, ML is best in most cases and QL is worst in all cases.
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Conclusively, MM which is easily calculated has small bias and high efficiency
for moderate range of u and ¢.

Table 3. Bias of ¢arr, darar, b, and $aqL

in negative binomial distribution

7 2 ) 1. 2. 5.
¢

.006 | -.001 | -.006 | -.001 | -.003
1 .010 | -.001 | -.005 | -.001 | -.002
-.379 | -.045 | .118 | .137 | .045
-.594 | -.274 | -.063 | .030 { .004
-.003 | -.003 | -.002 | .001 | -.001
-.003 | -.003 | -.002 | .003 | .000
-.463 | -.099 | .094 | .132 | .048
-.686 | -.344 | -.106 | .010 | -.000
.006 | .010 | -.003 } .002 | -.001
3 005 | .010 | -.001 | .004 | .000
-539 | -.147 | 063 | .125 | .048
-773 | -.411 | -.156 | -.014 | -.007
028 | -.080 | .005 | -.005 | -.005
4 .021 { -.010 | .008 | -.004 | -.004
-.611 | -.218 1 035 .109 | .044
-.856 | -.494 | -.204 | -.045 | -.020
.001 | -.014 | .003 | -.003 | -.003
9 .000 | -.012 | .002 | -.003 | -.001
-.706 | -.281 | -.001 | .098 | .044
-.956 | -.571 | -.258 | -.072 | -.028

)

Table 4(a). ARE(figL, fimr) in negative binomial distribution

P 2 5 T. 2. 5
¢

1 9847 | .9924 [ 9959 | .9979 | .9991
2 9569 | .9756 | .9859 | .9924 | .9968
3 9272 | .9548 | .9725 | 9847 | .9934
4 8984 | .9326 | .9572 | .9754 | .9893
5 8715 | .9102 | .9409 | .9652 | .9845
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Table 4(b). ARE(dor, dmr) and ARE(éaar, durr)

in negative binomial distribution

i 2 .5 1. 2. 5.

¢
1 3936 | .6292 | .7613 | .8549 | .9187
9643 | .9795 | .9691 | .9702 | .9682
2 4614 | .6746 | .8017 | .8854 | .9431
9257 | 19456 | .9625 | .9740 | .9808
3 5071 | 7098 | .8240 | .8990 | .9518
.8881 { .9149 | .9398 | .9608 | .9775
4 5378 | .7339 | .8383 | .9064 | .9556
.8553 | .8843 | 9143 | .9432 | .9696
) 5572 | .7504 | .8476 | .9103 | .9570
.8265 | .8561 | .8890 | .9242 | .9597

3.2 Beta-binomial mixture

Same structure of simulation as in Section 3.1 is done for g = .1(.1).5 and
é = .01(.01).05, and m is fixed as 10. Biases and ARE’s of three estimators are
given in Table 5 and 6, respectively.

For the bias of ¢, &)QL overestimate in all cases and &AQL still overestimate
even though it mitigate slightly. For the ARE of p, ML is always best. The
ARE(jiarr, fipur) is small for small p and large ¢. The ARE of ¢ shows different
pattern. The ARE((]BML,QSMM) decreases as ¢ and ¢ increase.

Again, as in the negative binomial case, MM performs quite well in the sense of
bias and ARE, so we recommend to use MM as estiamtors for p and ¢.
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Table 5. Bias of qBML, szM, (}ASQL, and &AQL
in beta-binomial distribution

-.004 { -.009 | -.004 | -.004 | -.003
.01 -.001 |} -.000 | -.000 | -.000 | -.000
0174 .017 | .011 | .008 | .008
.014 | .015| .010 | .007 | .007
-.003 | -.002 | -.001 | .000 | -.001
.02 .000 { .000 | -.000 | .001 | -.000
016 | .018| .013 | .011 | .009
013} .017} .012 | .010 | .008
.001 }-.000 | .001 | .000 { -.000
.03 .001 | .000 | .001 | .000 | .000
015 .019 ¢ .015| .012 | .011
011 017 | .014 | .011 | .010
.000 | -.001 | -.000 | .000 | .000
.04 .000 | -.001 | -.000 | .000 | .000
012 .019 | .016 | .014 } .013
009 | .017 | .015| .013 | .012
.000 | .000 | -.000 | -.000 | -.001
.05 .000 { .001 | -.000 | .000 | -.001
.010 | .021 | .018 | .015| .014
006 | .018 | .016 | .014 | .013

Table 6(a). ARE(figL, ftarr) in beta-binomial distribution

I 1 2 3 4 5
.01 9973 1 .0991 | 9997 | .9999 | 1.0000
.02 9907 | .9968 | .9989 | .9997 | 1.0000
.03 9816 | .9935 | 9977 | .9995 | 1.0000
.04 9711 .9894 | .9962 | 9991 | .9999
.05 9598 | 9848 | 9944 | 9987 | .9999
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Table 6(b). ARE(dqL, drrr) and ARE(arar, darr)

in beta-binomial distribution

7 1 2 3 4 5
¢
01 9042 | .8821 | .8755 | .8726 | .8719
9944 | .9978 | .9993 | .9996 | .9999
02 9258 | .8757 | .8603 | .8464 | 8524
9825 | .9935 | .9977 | .9995 | .9999
03 9395 | .8661 | .8438 | .8438 | .8324
9687 | .9877 | .9955 | .9989 | .9999
04 9477 | 8546 | .8265 | .8154 | 8123
9552 | .9814 | .9929 | .9982 | .9998
05 9510 | .8418 | .8088 | .7958 | .71922
9426 | .9750 | .9903 | .9974 | .9996
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