Extreme Value of Moving Average Processes with Negative Binomial Noise Distribution

  • Park, You-Sung (Institute of Statistics, Korea University, Seoul, 136-701)
  • Published : 1992.12.01

Abstract

In this paper, we investigate the limiting distribution of $M_n = max (X_1, X-2, \cdots, X_n)$ in the infinite moving average process ${X_t = \sum c_i Z_{t-i}}$ generated from i.i.d. negative binomial variables $Z_i$'s. While no limit result is possible, nonetheless asymptotic bounds are derived. We also present the tail behavior of $X_t$, i.e., weighted sum of i.i.d. random variables. This continues a study made by Rootzen (1986) for discrete innovation sequences.

Keywords