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AUTOCORRELATION FUNCTION STRUCTURE
OF BILINEAR TIME SERIES MODELS !

Won Kyung Kim? and In Kyu Kim?

ABSTRACT

The autocorrelation function structures of bilinear time series model BL(p,q,r,s),
r>s are obtained and shown to be analogous to those of ARMA(p,l), ! = max(q,s).
Simulation studies are performed to investigate the adequacy of Akaike information
criteria for identification between ARMA(p,!) and BL(p,q,r,s) models and for deter-
mination of orders of BL(p,q,r,s) models. It is suggested that the model of having
minimum Akaike information criteria is selected for a suitable model.

1. INTRODUCTION

Time series analysis has been focus on the linear models. However, there are many
situations in which the linear models are not appropriate to represent real time series.
Therefore, it is natural to ask if there exist non-linear models which provide a better fit to
reality. One of the non-linear time series models suggested in recent years is the bilinear
model.
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The general bilinear model of order p,q,r, and s, denoted by BL(p,q,r,s), is defined by

P q9 T s
X, = Zai‘xt—i + e + chet_j + ZZb,’th_iet_]', (1.1)
i=1 1=1 i=1j=1
where {e;} is a sequence of independent and identically distributed random variables with
mean 0 and variance 0% < co .

Subclasses of the model (1.1) have been considered in many works since Granger
and Andersen (1978) have introduced them. Stationarity, invertibility, and ergodicity
for subclasses of the model (1.1) have been subsequently studied in Subba Rao(1981),
Quinn(1982), Bhaskara Rao et al.(1983), and Akamanan et al.(1986). Estimations of
parameters have been considered in Pham and Tran(1981), Subba Rao and Gabr(1984),
and Won Kyung Kim et al.(1990)

It is well known that the bilinear model BL(p,0,p,1) has a similar autocorrelation
structure to that of the autoregressive-moving average model ARMA(p,1) (Subba Rao,
1981). This fact makes identification problem arise. Granger and Anderson(1978) sug-
gested the autocorrelation function of the squared process { X?} for identification, while
Kumar(1986) considered the third-order moments. However, the autocorrelation struc-
tures of the general bilinear model BL(p,q,r,s) have not been investigated.

In this paper, we study the autocorrelation structure of the bilinear model BL(p,q,r,s),
r>s, and perform some simulation studies to investigate the adequacy of Akaike informa-
tion criteria (AIC) for identification between ARMA and BL models and for determination
of orders of BL models.

2. PRELIMINARY

The general bilinear model (1.1) can be classified by three subclasses. If b;; = 0 for all
¢t # j in (1.1), the bilinear model is called diagonal. If b;; = 0 for all < j, the model is
called superdiagonal. In the case of diagonal and superdiagonal models, the e;_; occurs
after the independent X;_; in the multiplicative terms with non-zero coefficents. This fact
makes analysis somewhat easier. On the otherhand, the model is said to be subdiagonal
if b;; = 0 for all > 3. In this case, analysis is very difficult since the X,_; occurs strictly
after the e,_;.

In this paper, we restrict our attention to diagonal and superdiagonal models which
are assumed to be stationary. The stationarity conditions for the models BL(p,0,p,q) and
BL(p,q,r,s), r > s, are obtained in Bhaskara Rao et al.(1983) and Akamanan et al.(1986),
respectively.
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3. AUTOCORRELATION STRUCTURE

The autocorrelation structures of stationary diagonal and superdiagonal bilinear mod-
els are obtained in the following theorems.

Lemma 1. For the diagonal bilinear model DBL(0,q,s,5), ¢ > 0, s > 1,

q s
Xi=¢ + ZC,’G;-,‘ + Z bijt_jet_J-, (31)

i=1 j=1

the autocorrelation function satisfies the following equation.

p(k) = 7(0)_1{2q: ciE(e—iXeok) + ibij(et—sz—th—k) -l k=12, (32)

i=k j=1

where 4(0) = E(X?) - ¢? and p = E(X,) = ¢*>_ bj;.
Ifk > max(s,q), then we have p(k)=0. (3.3)

Proof. Mutiplying Xi—k on both sides of (3.1) and taking expectation gives
E(X:Xi-k) Zc, (er—iXi—k) + z:IbHE' e Xe; Xik), k=1,2,- (3.4)
i=
If k > max(s,q), then we have
E(X X, k) = o’y Zl bij.- (3.5)
i=
From the definition of autocorrelation function ie.,

p(k) = v(k)/7(0) = [E(X: X,—k) 2]/’Y( (3.6)

the proof is completed.

Lemma 2. For the diagonal bilinear model DBL(p,0,s,5), p > 1,5 > 1,
14 s
Xe=3 aiXei+ e+ D b X ey, (3.7)

=1 i=1

the autocorrelation function satisfies the following equation.
p(k) = aip(k — 1) + azp(k —2) + - -+ + app(k — p)

—I{ijjE(Xt—jet'th—k) - uz(l —ap —ay — - = a’P)}’ k= 1,2,' t, 8

=1



50 Won Kyung Kim and In Kyu Kim

where p = E(X;) =0*>_bj;/(1 —ay —ay — -+ — ap) (3.8)
j=1
p(k) = aip(k — 1) + agp(k —2) + -+ app(k —p), k2 s + 1. (3.9)

Proof. Multiplying X,_x on both sides of (3.7) and taking expectation gives

E XXt k Za E \t 1At k +Z et ]'Xt_th_k), k= 1,2,"'. (3.10)

Therefore, (3.8) can be obtained flom subtlactmg u? and dividng by v(0) on both
sides of (3.10). For k > s+ 1, we have

E(et_th__]')\,t_k) = 0’2/1, J = 1,2, e, 8 (311)
where u is given in (3.8).
Hence, the proof is completed.

Theorem 1. For the diagonal blhnear model DBL(p q,8,8),p>1,¢>0,8>1,
Zal Xt ,+61+ZCJCt_] -+ Zb“Xt_]Cg_J, (312)
=1 j= J=1

the autocorrelation function satisfies the following.

p(k) = aip(k — 1) + azp(k = 2) + -+ + app(k — p) + Ar, k=1,2,---  (3.13)
where
g
_l{z C,‘ et th k +Z bJ]E € ]Xt ]Xt k) 2(1 —day —dg —*** — ap)}
1=k 7=1
and p =02 b;;/(1 —ay—ay— -+ —ap).
7=1

Particularly, we have that for k > max(s,q),
p(k) = arp(k = 1) + azp(k —2) + --- + app(k — p). (3.14)

Proof. The expectation of cross product X;X;_x is given by
P q
E(X X, )) = ZaiE(Xt—iXt—k) + ZCjE(Ct-th—k)
— e~
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+> b B (e X Xek), k=1,2--- (3.15)
7=1
9
Hk>qg+1, then Y c;E(ejXi—k) = 0. (3.16)
7=1
Ifk>s+1, then Z b Ele; X ; Xiok) = po? Z b (3.17)
i=1 j=1

Subtracting x? from both sides of (3.15) and dividing 4(0) completes the proof.

Lemma 3. Tor the superdiagonal bilinear model SBL(0,q,r,1), ¢ > 1,7 > 2,

q r
Xt = € + ZCict_,- + ijl)(t_jet_l, (3.18)

=1 1=1

the autocorrelation function is obtained as follows.

q ™
p(k) = 7(0) D ciB(ewmiXes) + Db E(Xemjer1Xees) - p2}, k=1,2,--- (3.19)

i=k i=1
where g = b 0% (3.20)
If q=0, then we have p(k) = 0,k > 2. | (3.21)

Proof . The proof is similar to that of Theorem 1.

Lemma 4. For the superdiagonal model SBL(0,q,r,s), ¢ > 0,1 <s <,

q T S
Xt =e + Z Ci€¢—j + Z Z b,‘th..,'et_]' (3.22)
j=1 i > =1
the autocorrelation function is obtained as follows.
q r 8
p(k) = v(0) X ciE(ewi Ximk) + D D b E(Xicier—; Xeok) — 1°} k=12, (3.23)
j=1 i > =1
where pp = 0? ) bj;. (3.24)
Jj=1
If k > max(q,s), then we have p(k) = 0. (3.25)

Proof. The expectation of cross product X,;X; i is given by
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p T s
E(X\ Xy i) =) ciFE(esjXeg) D b E(Xi—ie ;X)) k=12,--9q
j=1

1 > 7=1

If k > max(q,s), then

E(et_]-X,_k)zo, ] = 1,2,---,(]
and Z Z b,'J'E(Xt_,'et_jX't_k) = 0’2;1, Z bjj.
i 2 j=1 J=1

Hence the proof is completed.

Theorem 2. For the superdiagonal model SBL(p,q,r,s), s <r

Za Xt 1+et+zc]€t -3 +ZZbUAt zet—]v

i 2> 5=1

the following equations are satisfied.

p(k) = arp(k —1) + - + a,p(k —p) + 7(0)‘1{Xq2 ciE(eiXi k)

=1
+Y D b E(Ximie i Xik) p*(l—ay—ag— - —ay)}, k=12,
i 2 =1
where = 0* > b /(1 —a; —ay — -+ — a,).
=1

Particularly, we have that for k > max(q,s),

p(k) = arp(k — 1) + azp(k = 2) + -+ + app(k — p).

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

Proof.  The proof is similar to that of lemma 4 except including terms of a;p(k —

7')72 = la2a"'7p

Remark 1. From the above lemmas and theorems, the autocorrelation structures

of bilinear models are similar to those of ARMA models. i.e.,

(i) DBL(0,q.s,8), q >0, s>1 = MA(l), I=max(q,s)

(i) DBL(p,0,s,8), p>1, s>1 = ARMA(p,s)

(iii) DBL(p,q,8,8), p2>1, ¢ >0, s>1 = ARMA(p,!), l=max(q,s)
(iv) SBL(0,q,r,1), q>1, r > 2 = MA(q)

(v)SBL(O,qrs), >0, 1 <s<r = MA(]), I=max(q,s)
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(vi) SBL(p,q,r,8), p>1, q>0, 1<s<r = ARMA(p,!), I=max(q,s)

From these autocorrelation structures, it is seen that the first parameter p of BL(p,q,1,5)
can be regarded as autocoregressive parameter and that the larger of the second and fourth
parameters can be regarded as the moving average parameter.

Remark 2. The autocorrelation structures of the bilinear models DBL(0,2,1,1),
DBL(0,1,2,2) and DBL(0,2,2,2) are all the same. However, there is no reason to select
DBL(0,2,2,2) in fitting a model because of rule of parsimony.

4. SIMULATION STUDY

In this section, some simulation studies are performed to investigate the practical
application of results in section 3 and the adequacy of Akaike information criteria for
identification between ARMA and BL models and for choice of orders of BL models.

We consider ARMA(1,1), BL(1,0,1,1), MA(2), DBL(0,0,2,2) and BL(0,1,1,1) models
which are assumed to be invertible. Fifty replications of length 500 are generated from
each model under the assumption that the e,’s are N(0,1). Using the Newton-Raphson
estimation procedure, ARMA and BL models are fitted. The Newton-Raphson procedure
for BL(p,q,r,s) can be carried out as follows.

For the model (1,1), it is assumed that the model is invertible and the e}s are N(0, o?).
Further, it is assumed that there are realizations {X;, Xy, - - ,Xn}. Then, the joint den-
sity function of {em, €my1,- -+, €n}, where m = max(p,q,r,s) + 1, is given by

—(n—m ) n
(2ra®)™ 2 + exp[—2072 Y €l
t=m
Since the Jacobian of the transformation (%) is unity, the likelihood function of
{Xm, Xm41,- -+, X} is the same as the joint density function of {ems€my1, -, €n}. Max-

imizing the liklihood function is minimizing the sum of squares of errors, S(4),

S(0) =3¢,
t=m

with respect to the parameters §' = (a;, - - - 48py Cly "+ Cqyb11,+ -+, bys). Denote 0; = a;,1 =
Liooupy Oiap = ¢, = 1,-+4,¢, Oiyjiprq = bij,i =1,---,r, 3 =1,---,s, and R =
P+ q+r+s. Then the partial derivatives of S(#) are given by
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and

' 35;' *’2 E: ‘dekdo’
k:LzuyR,l=LZ~HR

where these partial derivatives of e, satisfy the following recursive equations.

% =—Xik— ]Z::Cj d;;ij - ,Z:JZ; bint—i%;j’
3_2 = "6 i %77 de,_] - ggbu){t—id;;j,
;1:; B J’i:l Jdet—z _ Xt_ket—j — ggbﬁX:-i%,
d? d*e;_; d?
dakzz’k - ~jz=:1 ]daezlak ;;b']xt ¢ de—:ljﬁc’kl =12 R
2 . . ‘ .
d;i;;c R T W R,
TR Wt v e i e S
_;U:%Xngﬁﬁ’ 1=1,2,---,R
2 2 X T s 2 A
djk;;k, = det -2 i Jdi:;;; —‘z;]zlbinz_f:T:é:cj,
2 2,
T - >":c Py e 2SS X
2 q
dcid(;)tw - _((112:;: ]Z: di;,ztb_/::u ~e-w detk ,Z;Jz:l bij X dikztbk]m

By using these recursive equations, we can evaluate the first-order and second-order
derivatives for a given set of values of a;, c;,andb;; under the assumption that

e, =0, t=1,2,--- . m—1

— =0, t=1,2,---,m~—1, t=1,2,---,R
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d2
and . =0, t=12---m—-1, ¢,7=12,---,R

0,do; ~

Now let G’(8) be the transpose of the vector of first-order derivatives, and let H(8) be
a matrix of second-order derivatives, i.e.,

" _ [ d4s(8) d¢s(8) ds(8)
G(Q) - [ do, do, 7 Tdey
and
25(0) d?5(8)
(d6,)? d6,dfR
H(9) = : :
4?5(9) .. d2(6)
dfpdé, (d0r)?

To minimize S(@), we set the first order derivatives to zero. Expanding
G(8) near § = @ in Taylor series, we obtain

0 = [G(8)] = G(9) + H(0) (4 - )
Rewriting this equation, we have
0—0=-H0)G(9)
Hence the Newton-Raphson equation is given by
Q(k+1) =gk H“(Q(k))G(Q(k))

where ¥ is the estimate obtained at the k-th iterationstage. It is known that the Newton-
Raphson estimates usually converge, but they may not correspond to the global minimum
of S(8).

There are many criteria which indentify ARMA models, for example, Akaike informa-
tion criteria, Bayesian information criteria, and final prediction error. In this paper, we
consider Akaike information criteria to identify between ARMA and BL models and to
determine orders of BL models. Akaike information criteria for BL(p,q,r,s) is given by

AIC=(n—-m+ 1)logo? + 2(p+q+rs)
where 02 = (n —m + 1) doé
t=m
From the generated realizations of a ARMA(1,1) model with a set of coefficients

é1 = 0.5,0;, = 0.3 and the other set of coefficients ¢; = —0.6,8; = 0.2, ARMA(1,1) and
BL(1,0,1,1) models are fitted for each set. The initial estimates for computing Netwon-
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Raphson estimates are selected as the coefficient plus 0.2. Table 1 shows the average
AIC values of 50 replications for ARMA(1,1) and BL(1,0,1,1) models. In both sets of
coefficients, the average AIC values are shown to be less in ARMA(1,1) model than in
BL(1,0,1,1) model. Conversely, if realizations are generated from BL(1,0,1,1) models,
then the average AIC values are less in BL(1,0,1,1) models than in ARMA(1,1) models.

Table 1. Average AIC value* for ARMA(1,1) and BL(1,0,1,1) models

Fitted
Data model | ARMA(1,1) | BL(1,0,1,1)
generated model
ARMA(1,1)
6 =05 0,=03 40.75 65.92
o1 =-06 0, =02 38.58 43.63
BL(1,0.1,1)
a; =0.5 b;; =0.3 189.62 34.43
a; = —0.6 b; =0.2 112.56 39.84

* All the average AIC values are significant.

In table 2, the same analysis is done for MA(2) models and BL(0,0,2,2) models. In case
that the realizations are generated from MA(2) models, the average AIC values of MA(2)
models are shown to be less than those of BL(0,0,2,2) models in both sets of coefficients.
On the contrary, the average AIC values are shown to be less in BL(0,0,2,2) models than
in MA(2) models if realizations are generated from BL(0,0,2,2) models.

It is suggested from these simulation studies that the model of having minimum AIC
value is selected for a suitable model.

Table 2. The average AIC values* for MA(2) and BL(0,0,2,2) models

Fitted
Data model | MA(2) | BL(0,0,2,2)
generated model
MA(2)
0,=-04 6,=-0.3 39.24 148.47
0, =05 0, =-0.2 37.36 166.22
BL(0,0,2,2)
by = —0.4 by =—-03 311.91 40.06
app = 0.5 by = —0.2 369.67 39.74
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* All the average AIC values are significant.

To investigate the adequacy of AIC for choice of orders of BL models, three BL models
are fitted to the realizations which are generated from each model. Table 3 shows the
average AIC values of 50 replications. In case that BL(0,1,1,1) model is fitted, the Newton-
Raphson estimation procedure does not usually converge. Convergency is very sensitive
to initial estimates of coeflicients. Hence the average AIC values have large standard error
and they are not significant in BL(0,1,1,1) models.

It is seen from table 3 that the model of generating realizations has the minimum
AIC values for any set of coefficients. These results suggest that the Akaike information
criteria can be applicable to determine orders of bilinear models.

Table 3 Average AIC values* for BL models

Fitted
Data model | BL(1,0,1,1) | BL(0,0,2,2) | BL(0,1,1,1)
generated model
BL(1,0,1,1)
a, =05 6, =03 36.37 189.24 o
a, =—-06 b; =02 38.07 267.65 x
BL(0,0,2,2)
by = —0.4 by =-03 157.80 41.51 *x
BL(0,1,1,1)
b1 =05 ¢ =-03 113.17 172.93 40.27
by =—-04 ¢ =-0.2 53.02 110.74 40.06

* All AIC values are significant except **.
** Unsignificant because of large standard error.

5. CONCLUSION

In this paper, the autocorrelation structures of bilinear time series model BL(p,q,r,s)
r > s, are obtained and showu to be analogous to those of ARM A(p,{),{ = max(q,s).
From these results, it is seen that the first parameter p of BL(p,q,r,s) 7 > s, can be re-
garded as the autoregressive parameter and the larger of the second and fourth parameters
is regarded as the moving average parameter. Some simulation studies are performed to
investigate the adaquacy of AIC criteria for identification between ARMA and BL models
and for choice of orders of BL models. It is suggested that Akaike information criteria can

57
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be applicable to determine orders of bilinear models and the model of having minimum
AIC value is selected for a suitable model.

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)
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