정상 시계열에서의 이상치 발견과 시계열 모형구축

Outlier detection and time series modelling in the stationary time series

  • 이종협 (덕성여자대학교 통계학과) ;
  • 최기헌 (덕성여자대학교 통계학과)
  • 발행 : 1992.09.01

초록

최근에 시계열에서의 이상치 발견을 위한 여러 가지 반복적인 방법들이 소개되었으나 이들 대부분은 시계열의 기저모형이 알려져 있거나 식별될 수 있다는 가정하에서 개발되었다. 그 렇지만 실제로 이상치들이 모형식별을 왜곡 시키거나 심지어는 불가능하게 만드는 경우가 발생한다. 본 논문에서는 두 개의 시계열 관측치 사이의 거리에 근거한 새로운 척도를 이용 한 이상치 탐색 방법을 제시하였다. 특히 이방법은 이상치를 발견하는데 시계열 모형에 의 존하지 않는다. 제안된 통계량에 대한 여러 가지 성질을 밝혔으며 이상치의 형태를 구별하 기 위해 전이함수모형을 이용하였다. 그밖에 이상치를 포함하고 있는 시계열의 모형을 구축 하기 위한 반복적인 절차를 제안했다.

Recently several authors have introduced iterative methods for detecting time series outliers. Most of these methods are developed under the assumption that an underlying outlier-free model is known or can be identified. Since outliers can distort model identification or even make it impossible, we propose procedure begins with a descriptive data analysis of a time series using distance measures between two observations. Properties of the proposed test statistic are presented. To distinguish the type of an outlier are used transfer function models. An empirical example is given to illustrate the time series modeling procedure.

키워드