초록
Compliance mismatch across an end-to-end anastomosis was measured In the In vitro experimental setup. A 35mm camera was used and Image process was done in Gould/ DeAnza Image processor. The results showed that compliances of Penrose tubing and synthetic PTFE grafts were In good agreement with the previously reported In vivo data. PTFE grafts exhibited a nonlinear behavior with compliance decreasing with Increasing transmural pressure, whereas the compliance of the Penrose tubing remained relatively constant within the range of the pressures in which data were obtained. The lumen cross sections at the anastomosis were affected by the suture and the mismatch In compliance between the Penrose tubing and vascular grafts. The varla~lons In the lumen dtameter at the anastomosis was more pronounced with increasing transmural pressures. From the present study, it was clearly demonstrated that the compliance of prosthetic grafts Is much lower than that of the arteries. In addition to the hemodynamlc consequences, compliance mismatch across the anastomosis has been known to lead to Increased anastomotlc and suture stresses with resultant suture line dehlscence and false aneurysm formation. Thus, there are good hemodynamic reasons to suppose that Introduction of a less compliant arterial graft Into the arterial circulation wlll be damaging and that grafts should be made to match the elastic behavior of their host arteries as closely possible.