모델링재료를 이용한 축대칭형 돔형상의
폐쇄단조 성형 연구 (I)

이근안*・임용택*・이종수**・홍성석**
(1992년 5월 25일 접수)

An Experimental Study on Forming an Axi-Symmetric Dome Type
Closed-Die Forging Product Using Modeling Material (I)

Geun-An Lee, Yong-Taek Im, Jong-Soo Lee and Sung-Suk Hong

Key Words: Similarity (상사성), Closed-Die Forging with Flash (폐쇄부를 가진 폐쇄단조),
Flash Width to Thickness Ratio (폐쇄부의 폭대 두께비)

Abstract

An experimental study on forging an axi-symmetric dome type of AISI4130 was carried out
using modeling material. In order to verify the validity of the experimental data, a similarity
study between plasticine and AISI4130 has been made. Friction conditions were characterized
by ring test for the various lubricants. For the closed-die forging experiments of an axi-symmetric
dome type of AISI4130 using the plasticine, various cylindrical billets with different aspect
ratios were forged and different flash width to thickness (W/T) ratios were used in order to
determine the optimum forging conditions. As W/T ratios decrease forging loads decrease while
excess volumes increase. It was found out that the experimental results reproduce the similiar
results available in the literature. As a result of these experiments, it was construed physical
modeling is an excellent tool for forging process simulation at a practical level.

--- 기호설명 ---

A : 재료상수
k : 재료의 전단유동응력
m : 전단마찰계수
mf : 변형률도지수
n : 가공경화지수
\(\sigma \) : 유동응력
\(\epsilon \) : 변형률
\(\delta \) : 변형률도

1. 서 론

소성가공은 소재의 손상을 최소로 줄이면서 원하는 형상의 제품을 가공하는 방식이다. 소성가공의
일종인 단조 공정은 간단한 형상의 소재를 금형을
동하여 복잡한 형상의 부품으로 만들어주는 생산공
정으로 대량생산을 가능케 하고 또한 비교적 높은
강도를 가진 부품을 만들어 주기 때문에 자동차, 트럭, 항공기, 철도차량 등의 부분 생산에 적합하
다. 그러나 복잡한 형상의 제품을 결합이 없이 만
들거나 부속적인 기계가공 공정을 없애기 위한 공
정설계를 위해서는 생산공정에 대한 보다 많은 이
해가 필요하다.

따라서 단조 공정에서 보통 사용되는 경청법칙의
유한 단조 공정 설계가 제품의 경합을 유발한다는
지 프레스에 손상을 입거나, 또는 부품의 최종 형
상 및 차수가 원하는 값과 맞지 않을 경우에 소
모되는 재설계 및 이에 따른 새로운 공구들의 조합
등은 막대한 손실을 초래하게 된다. 또한, 단조공
정에 관한 실험은 규모 및 비용때문에 실험의 규모
로 수행하기 어렵고 결과로 공정에 대한 체계적인
이해가 없이는 혼란하는 경쟁 법칙에 의존하는 수
밖에 없을 것이다. 이와 더불어 최근 국제시장에서
강력한 경쟁력을 확보하기 위해서는 산업에 고금품의 제품
을 생산해야만 한다. 결국 이러한 요구사항들을 충
족시키기 위해서는 보다 정밀하고 능률적인 단조
공정 설계방안이 필요하다.

단조 공정 중에 일어나는 재료들의 유통을 알아
보기 위한 모델링 재료를 이용한 실험과 상계법,
수치해석 프로그램의 개발은 많은 주목을 받아왔
다. 모델링 재료를 이용한 실험은 공작물과 기하학적
적으로 상상성을 가진 재료를 사용하여 단조공정에
모사하는 방법으로 제료비가 짐주 약간 등을 이용
한 실험장치를 이용할 수 있기 때문에 비교적 유
용한 자료들을 저람하게 얻을 수 있는 장점이 있
다. 지금까지 주로 사용된 모델링 재료들은 흰스,
탄소강, 젤로 또는 납 등으로 이들에 대한 많은 연
구가 진행되어왔다[1-13].

본 논문에서는 모델링재료를 이용한 AISI4130
확대영 도움형상의 열간 단조 공정 설계 방안을 이
룩하기 위한 실험을 수행하였다. 본 실험에 사용된
모델링 재료는 Van Aken International사 제품의
Plastalina를 이용하였다. 모델링재료와 실제 재료
사이의 상상성을 견고하기 위해 압축시험을 수행하
는데 압축 시험시 모델링재료와 폭다이 사이의
마찰력을 증가하기 위해 비어이파무어, 휘쳐, 비어와
린, 테프로닐이며 마른 속도 및 온도, 그리고 변형률도에 따른 압축 방향을 검토해 보았
다. 열간 공정시에 수반되는 급형과 공작물 사이의
마찰력을 알아보기 위해 앞에 열간한 유폴제에 이
용한 탱시험을 수행하여 전단마찰계수(m) 값의 변
화를 알아보고 제료단조 시 주요한 설계방안을 정
토하기 위해 플래셔의 갖는 재료단조 실험을 수행
하였다. 이 실험에서는 제료단조의 중요한 설계변수
중 하나인 플래셔 두께에 따라, 플래셔부분에
 또한 체적손실, 그리고 원기둥모양의 초기 단조 시
전 형상비 등에 따른 설계변량을 점토하여 기존 참
고문헌에 나와 있는 결과들과 유사성을 검토하였
다. 이와같은 실험 결과를 통하여 고강도강 열간
단조 공정을 모사하는 실험 기법을 체계적으로 확
립하고 고강도강 대형 단조품생산에 필요한 단조
하중 예측, 예비설계 설계, 성형성 연구 등에 대
한 응용성을 검토하고자 한다.

2. 플라스터신의 압축 및 립 압축시험

재료의 항복 특성을 알아보기 위해서는 압축시험
이 많이 이용되는데, 이는 압축시험에 다른 재료시
험에 비해 높은 변형률까지 압축이 가능하기 때문
이다. 일반적으로 압축 응력을 구하기 위해서는 압축
시험 도중 외래 시편사이의 마찰력을 최소로 줄
이어야 하므로 본 실험에서는 바셀린, 휘쳐, 비어이
파무어, 합판 레이(rolling paper) 등을 이용
하여 마찰을 줄이 노력하였다. 시험은 적교하고 높
이가 같은 원통형으로 만들어 실험하였다.

플라스터신은 미국의 Van Aken International사
에서 만들었으며, 기름과 혼합된 점도의 일종으로,
그의 특징은 고온의 강도를 보유하는데 가구
유용하기 때문에 많이 사용되어왔다. 또한 어떤
형태로는 만들기 쉽고, 내부 변형을 쉽게 볼 수 있
록 다양한 설계를 이용할 수 있는 장점이 있다.
유동음력 또한 작아서 설계장치의 용량이 작아도
되며, 실험하는 동안에 충분히 의한 재료의 경화가
무시되어질 수 있다는 것이 모사시험에 많이 사용
하게 되는 주된 요인이다. 플라스터신의 주성분은 탄
산칼슘, 농축류, 탄산마그네시, 염료 등으로 물에
불용성이 온도에 영향을 받는 것으로 알려져 있
다. 일반적으로는 실제 재료의 상상을 이루기
위해 플라스터스에 바셀린(vaseline), 라드로
(lanolin)과 페진(resin) 등을 섞어 사용하는데 본
실험에서는 우선 플라스터라이나 원재료만을 이용하
여 음력-변형률-변형률-온도 관계를 알아보고자
시도하였다.

시험은 플라스터신을 1시간 정도 고무난지로 두
들어서 내부에 기포가 남아 있지 않도록 만든 후
손으로 개략적인 설계형상으로 만든 후 강관먼
으로 시험을 넣고 편리로 압축을 가한 후 압축을
드릴링 머신에서 시행하여 적경과 높이가 22.5 mm
혹은 14 mm인 원형으로 만들었다. 만들어진 시
험은 냉동실에 11시간 정도 보관했다고 생각해서

2083
약 2시간 방치한 후에 사용하였다. 실험 장비로는
한국표준과학연구원 제로 특성 실험실이 보유하고
있는 500 kg 로드셀(load cell)을 사용한 Instron으론
로 50, 100, 500 mm/min의 램속도를 유지하여 압
축실험을 수행하였다. 또한 재료의 유동용역의 변
형율도에 따른 변화를 경계하기 위해서 변형률을
0.001, 0.05, 0.1, 1.0/(sec)로 유지하여 한국과학
기술연구원의 Thermocmaster를 이용한 압축실험을
수행하였다. 유동용역의 온도변화에 따른 변화도
-20℃, 0℃, 19℃의 경우에 압축실험을 수행하
여 검토하였다.

단조공정 해석에서 흔히 이용되는 전단 마찰력
(m k, m=전단 마찰계수, k=재료의 전단유동용
력)을 알아내기 위한 실험을 수행하였다. 실험
에 의하면 동심의 내경은 전단 마찰계수에 따라 변
화하므로 동심의 변화를 측정하여 상계법이나
유한요소법에서 구한 보정선도와 비교하여 전단마
찰계수를 구한다. 실험에 사용된 동심의 구결은 외
경 : 내경 : 높이 = 6 : 3 : 2(45×22.5×15 mm)였으며
윤활제로는 데프로 테일, 바셀린, 허리, 베이비와
우드, 그리고 염전 유리 등의 레이용하였다. 실험
장비로는 한국표준과학연구원의 500 kg 로드셀을 이용한 Instron을 사용하였다.

실험에 의해 구한 하중-변위선도로부터 얻어진
전용역과 전변형률 관계가 Fig. 1에 수여져 있다.
이 그림에 의하면 허리 또는 베이비와우드를 윤활
제로 사용했을 때 비슷한 결과를 얻을 수 있었으며
전변형률이 0.2 이상일 때 플라스틱이나의 유동용
력(flow stress)이 약 0.016 kg/mm²였다. 이는 허리
와 베이비와우드들의 경우 비슷한 마찰조건을 나타
낸다는 것을 의미한다. 태프론과 바셀린을 이용한
경우에는 유동용력이 전변형률이 0.25일 때
0.0145 kg/mm²임을 알 수 있다.

Fig. 2에는 윤활제를 태프론과 바셀린을 사용했을 때 램 속도의 변화에 따른 유동용역의 변화를 나타내었다. 실험에 사용되었던 램 속도는 50과
100, 그리고 500 mm/min이었다. 이 그림을 살펴보면 램 속도가 빨라질수록 유동용력이 커지는 것을 알 수 있었으며, 변형률이 0.4 이상인 경우 이들의 차는 0.0015에서 0.002 kg/mm² 정도인 것으로 나타났다.

Fig. 1 Measured stress-strain curves obtained from compression test of plasticine using various lubricants under ram velocity of 100 mm/min

Fig. 2 Measured stress-strain curves obtained from compression test of plasticine using Teflon & Vaseline as a lubricant under various ram velocities

Fig. 3 Measured stress-strain curves obtained from compression test of plasticine using vaseline as a lubricant under various strain rates
다. Fig. 3에는 변형률도에 따른 유동용액의 변화를 보여주고 있는데 이 그림에 의하면 변형률이 커질수록 유동용액이 커지고 있음을 알 수 있다.

Fig. 4는 음도의 변화에 따른 플라스틱이의 유동용액의 변화를 나타내고 있다. 이 그림을 보면 음도가 낮을 수록 유동용액이 높아지는 것을 알 수 있다.

마찰력을 알아내기 위한 림 압축시험에서 림 압축시 내경의 변화를 탐색이가 약 10%씩 감소될 때마다 림의 중심선상 부분 내부의 배포 현상이 일어난 곳에서 측정하여 이 값을 보정선도에 Fig. 5와 같이 나타내었다. 이 그림에 의하면 테프론과 비닐린 태일을 이용할 경우 전단 마찰계수는 약 0.08에서 0.15까지이며, 휘어를 이용한 경우에는 약 0.2에서 0.35, 레밍레이아을 이용할 경우에는 약 0.1에서 0.17, 그리고 에이비파우더를 이용할 경우에는 약 0.5에서 0.75까지였다. 이는 보통 업간 단조일 m값이 0.1에서 0.4까지 이르므로 앞의 유함계 중 에이비파우더만을 제외하면 실제 공정은 잘 모사할 수 있다는 것을 알았다. 이와같은 압축 실험과 림 실험의 결과를 검토해 보면 모델링 제료를 이용한 실험들이 원활히 이루어진 것을 알 수 있었다.

3. 합금강(AISI4130)과 플라스틱의 상사성

실험 단조 관형과 모델링 실험의 상사성이 보장되기 위해서는 소성영역에서 응력과 변형률, 응력과 변형률도사이의 관계들이 서로 상사성을 이루어야 한다. 또한 재료의 급행사이의 마찰 조건이 거의 같아야 한다. 플라스틱의 유동한 단조관형도 사 실험의 타당성을 검토하기 위하여, 상온의 플라스틱과 고온의 합금강 사이의 상사성을 검토하였다.

플라스틱이의 응력-변형률-변형률도 관계는 알기 위하여 재료의 유동용액을 다음과 같이 나타내었다.

$$\sigma = Ae^n \varepsilon^m$$

여기서 σ=유동용액, ε=변형률, n=방향도, m=변형률도가치, 그리고 A=재료상수로 A, n, m값은 실험치로부터 다음과 같이 구했다.

Fig. 6은 응력과 변형률을 대수값(log scale)으로 나타낸 그림인데, 변형률이 0.005~0.3까지는 유동용액의 변화가 변형률에 따라 거의 직선적으로 증가하면서 평행함을 볼 수 있지만 0.3 이상부터는 유동용액에 의한 변형률도에서 변형률에 대해서는 거의 변화가 없었다. 이 그림으로부터 ε =
0.005 ~ 0.3, 그리고 $\dot{\varepsilon} = 0.001 ~ 1$에서 가공성과 지수 n값은 기울기로부터 변형률을 매개변수로 구해진다. Fig. 6에서 직선들의 평균 경사를 구하면 n값은 대략 0.19에서 0.27인 것을 알 수 있었다.

Fig. 7로부터는 음력과 변형률도의 관계가 구해질 수 있다. $\varepsilon = 0.001 ~ 0.1$, $\dot{\varepsilon} = 0.001 ~ 1$ 영역에서 평균적인 기울기를 구하여 보면 m'값은 대략 0.062인 것을 알 수 있었다.

A 값은 $\varepsilon = 0.2 ~ 0.5$, $\dot{\varepsilon} = 0.1$일때 $\sigma = 0.013 ~ 0.014 \text{ kg/mm}^2$이며, 앞에서 구한 m'값과 n값을 식 (1)에 대입하면 $A = 0.0195 ~ 0.022$로 구해진다. 결과 식(1)은 플라스틱성에 대해 다음과 같이 표시할 수 있다.

$$\sigma = 2.16 \times 10^{-2} \varepsilon^{0.23} \dot{\varepsilon}^{0.026}$$ \hspace{1cm} (2)

마찬가지 방법으로 AISI4130 합금강의 $\sigma - \varepsilon - \dot{\varepsilon}$ 관계식을 알아보기 위해 Fig. 8에서 $\varepsilon = 0.05 ~ 0.4$, $\dot{\varepsilon} = 1 ~ 10$. Fig. 9로부터 $\varepsilon = 0.05 ~ 0.2$, $\dot{\varepsilon} = 0.1 ~ 1.0$인 구간의 평균기울기를 구하여 $n = 0.195$, $m' = 0.068$을 구하였다. 상수 A의 값은 $\varepsilon = 0.2 ~ 0.5$, $\dot{\varepsilon} = 0.1$일때 $A = 12.8 ~ 13.5 \text{ kg/mm}^2$으로 20.4 ~ 21.6이다. 그리므로 강의 유동응력식은

$$\sigma = 21 \varepsilon^{0.196} \dot{\varepsilon}^{0.068}$$ \hspace{1cm} (3)

으로 나타낼 수 있었다.

앞에서 구한 유동응력식을 비교해 보면 저수들의 차이가 플라스틱성과 강성을에 존재한다. 그러나
가공고정 지수의 차이는 ε가 작을 경우 즉 $\varepsilon = 0.01$일경우 약 15%, $\varepsilon = 0.1$일때 5.7%, $\varepsilon = 0.5$일 때 2.4%, $\varepsilon = 1$일때 0.1%~2.3%의 차이가 나므로 실제 큰 변형이 일어나는 소성고정의 폐쇄 실험에서 이들의 차는 용접-변형을 관계식을 유도하는 데 있어서의 오차와, 실험상의 오차와 고려해볼 때 값다고 생각할 수 있다. 따라서 우리는 플라스틱의 변형계량은 합금강의 변형계량과 상사하다고 간주할 수 있으며 플라스틱에 대한 실험값으로부터 실제 필요로 하는 혜과 용기를 구할 수 있을 것이 다. 본 실험에서 구한 용력의 지도값은 대략 944였다.

4. 축대형 Dome형상에 관한 폐쇄 단조 실험

앞면에서 발현된 플라스틱과 합금강 (AISI4130) 사이의 재료의 상성을 이용하여 폐쇄 습부를 갖는 폐쇄단조 실험을 수행하였는데 이 실험을 통하여 재료의 유동에 관한 상성을 관찰해 보고 여러 가지 성형변수들, 즉 빌딩의 초기 체격, 빌딩의 형상비, 폐쇄단조 금형의 플래시 크기등에 따른 향후의 변화, 단조 에너지 및 재료손실을 점검함으로써 본현에 나와 있는 결과들과 비교, 검토 하고자 하였다.

Fig. 10에 주어진 형상의 단조 실험을 플라스틱 신을 이용하여 램 속도를 50 mm/min에서, 용활조 건은 금형과 공작물 사이의 분리가 용이하도록 램핑

![Fig. 10 Cross-sectional dimensions of forging products of axisymmetric Dome Type made of AISI4130 in mm](image)

Fig. 11 Load-stroke curve obtained from closed-die forging of Dome Type with flash

![Fig. 11 Load-stroke curve obtained from closed-die forging of Dome Type with flash](image)

Fig. 12 Deformed shape of closed-die forging experiments of plasticine at various forging stages
50 mm/min이고 플래쉬 두께는 5 mm, 속도는 12 mm/분의 하중-변위선도를 나타내었다. 위의 조건으로 실험한 결과 단조품이 만들어졌을 때의 하중은 약 1.34톤 정도 사이에 있음을 알 수 있다.

Fig. 12는 시편의 높이 강소율에 따른 재료 내부의 윤동 상태를 보여주고 있다. 윤동이 이루어지는 양상을 보면 초기에는 전반적으로 반경 방향으로 비교적 낮은 하중에서 압착이 이루어지다가 플래쉬의 형성과 함께 하중이 급격히 증가하며 윤동이 용기의 꼭 부분에서만 이루어지면서 모든 부분에서 압착이 이루어지는 것을 볼 수 있다. 이 실험 결과로 나타나, 실제 일간 단조조의 하중을 예측할 수 있는 데, 실제 하중은 앞의 상사정에서 구한 적도 값을 이용하면 약 10,000톤 이상까지 이르고 있음을 알 수 있었다.

Fig. 13은 단조에 이용된 금형 플래시부의 두께/폭비 (T/W, W=10 mm일때)에 따른 초과 체적, 단조하중, 단조에너지에 따른 변화를 나타내고 있는데 이 그림은 플래쉬를 가진 페쇄단조 초기 금형의 플래쉬부 설계를 하는데 참고할 정보를 제공해 주고 있다. 이 그림에 의하면 플래쉬 두께가 작을수록 하중이 증가하고 에너지도 증가하지만 초과체적은 감소함을 볼 수 있는 반면 플래쉬 두께가 두꺼울 경우에는 이와는 반대현상을 보여주고 있다. 하지만 두께가 더욱 커져서 10이상인 경우에는 하중은 감소하고 초과체적과 에너지는 증가하고 있음을 알 수 있다. 이 같은 결과는 Vieregge의 피해량에 의해서 실험적으로 얻어진 결과와 유사하였다. 따라서 본 페쇄단조 실험을 통해 윤동의 상사정에도 얻었을 것으로 생각할 수 있었다.

서로 다른 체적을 가진 빌렛을 성형하였을 때의 하중을 비교해보면 용상도 페쇄가 생기지 않은 경우 (D/H=43:30) 단조하중이 580 kg였고, 플래쉬 생장시 (43/35와 43/40)의 하중이 각각 100에서 1400kg으로 매우 큰 차이를 보여주고 있음을 알았다. 또한 플래쉬가 생기지 않도록 초기 빌렛을 선택하여 성형할 경우에는 하중은 초기에는 감소하게 되지만, 점차 최고점이 낮은 (즉 페쇄비 (D/H)가 커질수록) 큰 하중이 작용하지만 최종상태에서 금형의 완전 체결이 이루어졌을 경우에는 상사정에서 두께를 두어야 한다.

5. 결론

대형 단조품을 성형하는 데 모델링 제어인 플라스틱을 이용하여 실험을 수행한 결과 본 실험에서 사용된 플라스틱에 AISI4130 합금사의 비이의 제조 및 윤동의 상사정이 이루어짐을 알 수 있었으며 상온의 플라스틱보다 100℃의 AISI4130 합금사의 윤동의 적도값은 약 944 입을 달성하였다. 또한 본 실험을 통한 마찰상태를 보면 다음과 같았다: 빌렛마무디를 이용할 경우의 견단 마찰 계수값: 0.5~0.75, 헤이의 경우: 0.2~0.35, 헤이의 계수: 0.1~0.17, 테프 론 데일과 바셀리의 경우: 0.08~0.15. 이 값들은 실제 일간 단조 공정시에 요구되는 마찰조건과 유사한 값을 얻었다.

플래쉬를 갖는 축대칭형 도출 형상의 페쇄단조 실험을 통하여 성형에 필요한 하중, 에너지 및 제로 손실을 감안한 경제적인 플래시부의 두께, 두께 비는 2.5인 것을 알 수 있었으며 이와같은 자료는 유사한 축대칭형 일간 페쇄단조서 플래시부 설계하는 데 매우 유용할 것이다.

후기

본 연구는 국방과학기술연구소의 위탁과제로 수행되었으며 실험을 수행하는 데 많은 도움을 준 한국표준과학연구원의 장진석, 김봉점을 감사합니다. 또한, 본 연구를 위하여 지원을 주신 분들께 깊은 감사를 드리며, 아울러 원고를 준비하는 데 많은 도움을 준 경북대학교 김갑사를 드린다.
참고문헌

(7) Vieregge, K., 1968. Contribution to Flash Design in Closed Die Forging, Doctoral Disserta-

tion, Technical University Hannover,

(10) 김현영, 1990 “UBET을 이용한 첩단조 액비 가공형 설계,” 박사학위논문, 서울대학교.

