STABILIZABILITY AND CONTROL PROPERTIES FOR AN EVOLUTION EQUATION

Kwang Pak Park and Jin Mun Jeong

1. Introduction

The main results of this paper are to derive an estimate for $A^{i s}$ where $s \in \mathcal{R}$ and A is the realization of an elliptic operators with Dirichlet boundary condition and concerned with some controll results of the following equation

$$
\left\{\begin{array}{l}
u^{t}(t)+A u(t)=\Phi f(t) . \quad 0 \leq t \leq T \tag{1.1}\\
u(0)=0
\end{array}\right.
$$

where $-A$ is the infinitesimal generator of an analytic semigroup in a complex Banach space X. The space X is colled δ-convex if there exists a real valued function δ on $X \times X$ having the propertics

$$
\begin{aligned}
& \delta(x, \cdot) \text { is convex for each } x \in X \\
& \delta(x, y)=\delta(y, x) \\
& \delta(x, y) \leq|x+y| \quad \text { if } \quad|x| \leq 1 \leq|y|
\end{aligned}
$$

and $\quad \delta(0,0)>0$.
For example, the sobolev space $L^{p}(\Omega)$ and l^{p} are δ-convex for $1<$ $p<\infty$, while $L^{1}(\mathcal{R}, \mathcal{R})$ and l^{p} are not.

In [9], R. Seely established a similar results by estimating for the L^{p} norms of the complex power $A B^{z}$ where $A B$ is an elliptic operator A whose domain is defined by well posed boundary condition $B u=0$.

From the R. Scely's estimate of $A B^{x+2 y}$ for $x<0$, we now can derive the estimate of $A^{i s}$ for $s \in \mathcal{R}$ where A is generlized second order elliptic operator and for any $f \in L^{r}\left(0, T ; L^{p}(\Omega)\right)$ and $1<r<\infty$ the equation (1.1) has a solution $u \in W^{1, r}\left(0, T ; W_{0}^{1, p}\right) \cap L^{r}(0, T ; \mathcal{D}(A))$

[^0]This research was supported by a grant from K) ungnam University, 1991 .
where $W^{m, p}(\Omega)$ is the set of all functions whose derivative up to degree m in distribution sense belong to $L^{p}(\Omega)$ and the closure of $C_{0}^{m}(\Omega)$ in $W_{p}^{m}(\Omega)$ is denoted by $W^{m, p}(\Omega)$.

In section 3, we consider a necessary and sufficient condition for controllability for the general evolution equation in reflexive Banach space X. The criteria for controllability can be stated in terms of A^{*}, the adjoint operator of the infinitesimal generator A.

We also derive to the relation between stabilizability of solution and the controllability for the equation (1.1).

In section 4, we give the example of retarded system.In this case many author's have discussed these concepts for retarded and neutral systems $[3,5,7]$.

In this note, we deal with also the stabilizability of retarded case, and the relation between stabilizable and controllable.

2. The group property of $A^{1 s}$

Let Ω be a bounded domain in \mathcal{R}^{n} with smooth boundary ∂G.
If we set

$$
\begin{equation*}
\mathcal{A}=\sum_{i, j=1}^{n} \frac{\partial}{\partial x_{i}}\left(a_{i}, \frac{\partial}{\partial x_{j}}\right)+\sum_{i=1}^{n} b_{i} \frac{\partial}{\partial x_{i}}+c \tag{2.1}
\end{equation*}
$$

where $a_{i j}=a_{11} \in C^{1}(\Omega)$ and $a_{1}(x)$ is positive definite uniformly in $\bar{\Omega}, b_{\mathrm{t}} \in C^{1}(\bar{\Omega})$ and $c \in L^{\infty}(\Omega)$, then the dual operator \mathcal{A}^{\prime} of \mathcal{A} is

$$
\begin{equation*}
\mathcal{A}^{\prime}=-\sum_{i, j=1}^{n} a_{j} \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}-\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}}\left(b_{i} \cdot\right)+\bar{c} \tag{2.2}
\end{equation*}
$$

Let A_{p} be $L^{p}(\Omega)$-realization with boundary value problem, that is, (2.3)

$$
\mathcal{D}\left(A_{p}\right)= \begin{cases}W^{2, p}(\Omega) \cap W_{0}^{1, p}(\Omega) & =\left\{u \in W^{2, p}(\Omega):\left.u\right|_{\partial \Omega=0}\right\} \\ & , \text { if } 1<p<\infty \\ \left\{u ; u \in W^{1, q}(\Omega),\right. & \left.\mathcal{A} u \in L^{1}(\Omega) \text { for } 1 \leq q \leq \frac{n}{n-1}\right\} \\ & , \text { if } p=1\end{cases}
$$

and $A_{p} u=\mathcal{A} u$ for $u \in \mathcal{D}\left(A_{p}\right)$, then $-A_{p}$ generates an analytic semigroups in $L^{p}(\Omega)$.

Similarly, we define

$$
\begin{aligned}
& \mathcal{D}\left(A_{p^{\prime}}=W^{2, p^{\prime}}(\Omega) \cap W_{0}^{1, P^{\prime}}(\Omega), \frac{1}{p}+\frac{1}{p^{\prime}}=1\right. \\
& A_{p^{\prime}} u=\mathcal{A}^{\prime} u
\end{aligned}
$$

for $u \in \mathcal{D}\left(A_{p^{\prime}}\right)$, then $-A_{p^{\prime}}$ also generates an analytic semigroup in $L^{p^{\prime}}(\Omega)$.

We consider the regular Dirichlet boundary problem,now.
An elliptic Dirichlet boundary value problem is regular problem if its system has the smoothness assumptions on the domain and the coefficient introduced above all.

For the sake of simplicity, we assume that $0 \in \rho\left(A_{p}\right)$ and $0 \in \rho\left(A_{p}^{\prime}\right)$. Since $-A_{p}$ gencrates an analytic semigroup, there exists $w \in\left(0, \frac{\pi}{2}\right)$ such that

$$
\begin{equation*}
\Sigma=\{\lambda: w \leq \arg \lambda \leq 2 \pi-r\} \subset p\left(A_{p}\right) . \tag{2.4}
\end{equation*}
$$

We can define

$$
\left(A_{p}\right)^{z}=\frac{1}{2 \pi i} \int_{\Gamma} \lambda^{z}\left(\lambda-A_{p}\right)^{-1} d \lambda, \quad \operatorname{Re} z<0
$$

where the path Γ runs in the resolvent set of A_{p} from $\infty e^{2 \theta}$ to $\infty e^{-1 \theta}$, $w<\theta<\pi$.
In $[(a)]$, it is established that there exists a constant c such that
$\left\|A_{p}^{x+2 y}\right\|_{p} \leq c e^{\gamma(y)}, x<0$ where c depands on A_{p}, ρ and γ is the constant in (2.4).

Lemma 2.1. $A_{p}^{t s}, s \in \mathcal{R}$ is a bounded if and only if $A_{p}^{-\varepsilon+s s}$ is a bounded for any $\varepsilon>0$.

Proof. Let $A^{t s}$ be a bounded for any $s \in \mathcal{R}$. It is known that there exists a constant $M>0$ such that

$$
\left\|\cdot A^{-\varepsilon}\right\| \leq M
$$

for $0 \leq \varepsilon \leq 1$.

For any $x \in \mathcal{D}(A)$ and $\alpha>0$.

$$
A^{-\alpha} x-x=A^{-\alpha} A^{-1} A x-x=\left(A^{-\alpha-1}-A^{-1}\right) A x \longrightarrow 0
$$

as $\alpha \longrightarrow 1(\alpha \downarrow 1)$.
This shows that $A^{-\alpha} \longrightarrow I$ strongly as $\alpha \longrightarrow 0$, therefore it follows that for any $\varepsilon>0$.

$$
\left\|A^{-\epsilon}\right\| \leq M
$$

for the sufficiently large constant $M>0$.
We have

$$
\left\|A^{-\varepsilon+2 s}\right\|=\left\|A^{-\varepsilon} A^{i s}\right\| \leq M\left\|A^{i s}\right\|
$$

where $\left\|A^{-\varepsilon}\right\| \leq M$
Hence, $A^{-\varepsilon+i s}$ is a bounded for each $\varepsilon>0$.
Conversely, for any $\varepsilon>0$, let $\left\|A^{-\varepsilon+1 s}\right\|$ be bounded,
that is $\left\|A^{-\epsilon+i s}\right\| \leq c$. For any $x \in \mathcal{D}\left(A^{2 s}\right)$

$$
A^{-\varepsilon+2 s} x=A^{-\varepsilon} A^{2 s} x \longrightarrow A^{i s} x
$$

as $\varepsilon \longrightarrow 0$. For $x \in L^{p}$ and $y \in \mathcal{D}\left(A^{i s}\right)$

$$
\begin{aligned}
& \left\|A^{-\varepsilon^{\prime}+i s} x-A^{-\varepsilon+2 s} x\right\| \leq\left\|A^{-\varepsilon^{\prime}+i s}(x-y)\right\| \\
& \quad+\left\|A^{-\varepsilon^{\prime}+i s} y-A^{-\varepsilon+i s} y\right\|+\left\|A^{-\varepsilon+i s}(y-x)\right\| \\
& \quad \leq 2 c\|x-y\|+\left\|A^{-\varepsilon^{\prime}+t s} y-A^{-\varepsilon+2 s} y\right\| .
\end{aligned}
$$

Hence the sequence $\left\{A^{-\varepsilon+i s} x\right\}$ is Cauchy sequence, there is $z \in L^{p}$ such that $A^{-\varepsilon+1 s} x \longrightarrow z$ as $\varepsilon \longrightarrow 0$.

Since $A^{-\varepsilon+i s} x=A^{r s} A^{-\varepsilon} x \longrightarrow z$ and $A^{-\varepsilon} \longrightarrow x$ it follows from closedness of A that $x \in \mathcal{D}\left(A^{2 s}\right)$. and $A^{1 s} x=z$. Therefore $A^{2 s}$ is a bounded in view of closed graph theorem.

Lemma 2.2. For any $s \in \mathcal{R}$, there exist a constant c such that $\left\|A^{2 s}\right\|_{p} \leq c e^{\gamma s}$, where c depand on A_{p}, p and γ

This Lemma follows from Lemma 2.1 and remarks before Lemma 2.1.

Remark 1. For any $-\infty<s<\infty$, let $A_{p}^{2 s}$ be a bounded and $A_{p}^{i s+z t}=A_{p}^{1 s} A_{p}^{2 t}$.

If $A_{p}^{\text {ts }}$ is strongly continuous, then there exists constants $c>0$ and $\gamma>0$ such that

$$
\left\|A^{2 s}\right\| \leq c e^{\gamma|s|}
$$

in view of properties of groups of bounded operators.
Remark 2. In the case where A_{p} is not invertible, R.Seely proved that

$$
\begin{aligned}
A_{p}^{-1} A_{p} f=f-P_{0} f, & f \in \mathcal{D}\left(A_{p}\right) \\
\lim _{z \rightarrow 0} A_{p}^{z} f=f-P_{0} f, & f \in L_{p}, \operatorname{Re} z<0
\end{aligned}
$$

where $P_{0}=\frac{1}{2 \pi z} \int_{|\lambda|=\varepsilon}\left(\lambda-A_{p}\right)^{-1} d \lambda$ be the projection on the generalized null space of A_{p}, and also proved that

$$
\begin{aligned}
& S^{z}=A_{p}^{z}+P_{0} \text { is a semigroup and } \\
& S^{z} \longrightarrow I \text { stronly as } z \longrightarrow 0
\end{aligned}
$$

while Lemma 2.1 is noted in terms of

$$
\left\|S^{r s}\right\| \leq c e^{i|s|}
$$

The allowable Banach spaces in this note are the δ-convex space. We know that the space X is δ-convex if and only if the Hilbert transform is a bounded operator on $L^{q}(R, X), 1<q<\infty$.

From the δ-convexity of $L^{p}(\Omega)$ and Lemma 2.2 we obtain the following theorem by using results of G.Dore and A.Venni.

Theorem 2.1. Let A_{p} be an operator defined by (2.3), then for any $f \in L^{r}\left(0, T: L^{p}(\Omega)\right)$ the Cauch problem

$$
\left\{\begin{array}{l}
u^{\prime}(t)+A_{p}(t)=f(t) \\
u(0)=0
\end{array}\right.
$$

has a unique solution

$$
u \in W^{1, r}\left(0, T: L^{p}(\Omega)\right) \cap L^{r}\left(0, T: W^{2, p}(\Omega) \cap W^{1, p}(\Omega)\right), \quad 1<p<\infty
$$

and

$$
\begin{aligned}
& u \in W^{1, r}\left(0, T: L^{1}(\Omega)\right) \cap L^{r}\left(0, T: W^{2,1}(\Omega) \cap W^{1, q}(\Omega)\right), \\
& \qquad 1 \leq q \leq \frac{n}{n-1}, p=1 .
\end{aligned}
$$

Remark 3. Let $[\cdot,]_{\frac{1}{2}}$ be a complex interpolace space, then $\left[W^{2, p}(\Omega) \cap W_{0}^{1, p}(\Omega), L^{p}(\Omega)\right]_{\frac{1}{2}}=W_{0}^{1, p}$. As is seen in [11,Lemma 5.5.1], we have

$$
\begin{aligned}
W^{1,2}\left(0, T: L^{p}(\Omega)\right) & \cap L^{2}\left(0, T: W^{2, p}(\Omega) \cap W^{1, p}(\Omega)\right) \\
& \subset C\left([0, T]: W^{1, p}\right) \\
& \subset C\left([0, T]:\left(\mathcal{D}\left(A_{p}\right) \cap L^{p}(\Omega)\right)_{\frac{1}{2}, 2}\right)
\end{aligned}
$$

where $\mathcal{D}\left(A^{p}\right)=W^{2, p}(\Omega) \cap W_{0}^{1, p}(\Omega)$
3. The relation between stabilizability of solution of (3.1) and controllability

Let U be complex Banach spaces.
We consider the following equation

$$
\left\{\begin{array}{l}
\frac{d}{d t} u(t)=A_{p} u(t)+\Phi f(t) \tag{3.1}\\
x(0)=u_{0}
\end{array}\right.
$$

where A_{p} is the operator in section 2 and $\Phi \in B\left(u, W_{0}^{1, p}(\Omega)\right)$.
We assume

$$
\begin{equation*}
\sigma\left(A_{p}\right) \cap\{\lambda: \operatorname{Re} \lambda=0\}=\phi \tag{3.2}
\end{equation*}
$$

Set $\sigma_{+}=\sigma\left(A_{p}\right) \cap\{\lambda: \operatorname{Re} \lambda>0\}, \sigma_{-}=\sigma\left(A_{p}\right) \cap\{\lambda: \operatorname{Re} \lambda<0\}$
We assume also that

$$
\begin{gather*}
\sigma_{+}=\left\{\lambda_{1}, \cdots, \lambda_{N}\right\} \tag{3.3}\\
-w_{0}=\sup \left\{\operatorname{Re} \lambda: \lambda \in \sigma_{-}\right\}<0
\end{gather*}
$$

and for each $j=1, \cdots, N$, the spectral projection

$$
\begin{equation*}
P_{\lambda_{1}}=\frac{1}{2 \pi i} \int_{\Gamma_{\lambda_{2}}}\left(\lambda-A_{p}\right)^{-1} d \lambda \tag{3.5}
\end{equation*}
$$

is the projection on generalized null space of A_{p} with finite rank, where Γ_{λ}, is a small circle centered at λ, such that it surrounds no point of $\sigma\left(A_{p}\right)$ cxcept λ_{j}.

If A_{p} has a compact resolvent, then above assumptions is hold.
If $\lambda_{j} \in \sigma_{+} j=1, \cdots, N$, then we have the Laurent expansion at $\lambda=\lambda_{3}$ is

$$
(\lambda-A)^{-1}=\sum_{n=0}^{K_{\lambda_{j}}-1} \frac{Q_{\lambda_{j}}^{n}}{\left(\lambda-\lambda_{j}\right)^{n+1}}+R_{0}(\lambda)
$$

where $Q_{\lambda_{j}}^{0}=P_{\lambda_{j}}, Q_{\lambda_{2}}=\left(A-\lambda_{j}\right) P_{\lambda_{2}}$ and $R_{0}(\lambda)$ is the analytic part of $(\lambda-A)^{-1}$ at $\lambda=\lambda_{j}$, hence λ_{j} is a pole of $(\lambda-A)^{-1}$ whose order is denoted by $K_{\lambda_{2}}$.

Moreover the order of a pole $\bar{\lambda}$ of $\left(z-A_{p}^{*}\right)^{-1}$ is equal to K_{λ}.
The above operator Q_{λ}, is defind by

$$
Q_{\lambda_{\jmath}}=\frac{1}{2 \pi i} \int_{\Gamma_{\lambda}}(u-\lambda)(\lambda-A)^{-1} d u
$$

We have $Q_{\lambda}^{K_{\lambda}}=0, \quad \operatorname{Im} Q_{\lambda_{\mu}} \subset \operatorname{Im} P_{\lambda_{j}}$.
We put $X_{\lambda_{3}}=\operatorname{Im} P_{\lambda_{1}}$.
Let $\Phi f \in L^{2}\left(0, \infty: W_{0}^{1, p}(\Omega)\right)$ and $u(t)$ be the mild solution of the equation (3.1) i.e.,

$$
u(t)=s(t) u_{0}+\int_{0}^{t} S(t-s) \Phi f(s) d s
$$

We define the sets of attainability R and the unobservable N by

$$
\begin{aligned}
& R=\left\{\int_{0}^{t} S(t-s) \Phi u(s): t \geq 0, u \in L^{2}(0, \infty: U)\right\} \subset W_{0}^{1, p}(\Omega) . \\
& N=\bigcap_{t \geq 0} K \epsilon r \Phi^{*} S^{*}(t) \subset L^{p^{\prime}}(\Omega)
\end{aligned}
$$

Definition 3.1.
(1) For any $\lambda \in \sigma_{+}, S(t)=e^{t A_{p}}$ is λ-controllable if $C l(R) \supset$ X_{λ}
(2) For any $\lambda \in \sigma_{+}, S^{*}(t)=e^{t A_{p}^{\prime}}$ is $\lambda-$ observable if $N \cap X_{\lambda}^{*}=$ $\{0\}$

The following Lemma is proved in [7. Theorem 7.2].
Lemma 3.1. For any $\lambda \in \sigma_{+}$

$$
\begin{aligned}
L^{p}(\Omega) & =\operatorname{Ker}\left(\lambda-A_{p}\right)^{K_{\lambda}} \oplus \operatorname{Im}\left(\lambda-A_{p}\right)^{K_{\lambda}}, \\
X_{\lambda} & =\operatorname{Im} P_{\lambda}=\operatorname{Ker}\left(\lambda-A_{p}\right)^{K_{\lambda}} \\
L^{p^{\prime}}(\Omega) & =\operatorname{Ker}\left(\bar{\lambda}-A_{p^{\prime}}\right)^{K_{\lambda}} \oplus \operatorname{Im}\left(\bar{\lambda}-A_{p^{\prime}}\right)^{K_{\lambda}}, \\
X_{\bar{\lambda}}^{*} & =\operatorname{Im} P_{\bar{\lambda}}^{*}=\operatorname{Ker}\left(\bar{\lambda}-A_{p^{\prime}}\right)^{K_{\lambda}} .
\end{aligned}
$$

If λ is a pole of $(z-A)^{-1}$ then above Lemma is also hold.
Lemma 3.2. The following statements are equivalent;
For any $\lambda \in \sigma_{+}$

> (i) $S(t)$ is λ-controllable
> (ii) $S^{*}(t)$ is $\bar{\lambda}$-observable

Proof. By the Hahn-Banach theorem, the necessary and sufficuently condition for (1) is that $R^{\perp} \subset X_{\lambda}^{\perp}$.

From the Lemma 3.1 and duality theorem

$$
\begin{aligned}
X_{\lambda}^{\perp} & =\left(\operatorname{Im} P_{\lambda}\right)^{\perp}=K e r P_{\lambda}^{*}=\operatorname{Im}\left(\bar{\lambda}-A_{p^{\prime}}\right)^{K_{\lambda}} \\
R^{\perp} & =\left(\bigcup_{t \geq 0}\left\{\int_{0}^{t} S(t-s) \Phi u(s) d s: u \in L^{2}(0, \infty: U)\right\}\right)^{\perp} \\
& =\bigcap_{t \geq 0}\left\{\int_{0}^{t} S(t-s) \Phi u(s) d s: u \in L^{2}(0, \infty: U)\right\}^{\perp} \\
& =\bigcap_{t \geq 0} K e r \Phi^{\perp} S^{\perp}(t) \\
& =N
\end{aligned}
$$

Hence in view of Lemma 3.1.

$$
N \cap X_{\bar{\lambda}}^{*}=\operatorname{Im}\left(\bar{\lambda}-A_{p^{\prime}}\right)^{K_{\lambda}} \cap X_{\bar{\lambda}}^{*}=\{0\}
$$

Lemma 3.3. The following statements are equivalent ;

$$
\begin{aligned}
& \text { (i) } S^{*}(t) \text { is } \bar{\lambda}-\text { observable } \\
& \text { (ii) }\left(\bigcap_{\jmath=1}^{K_{\lambda}-1} \operatorname{Ker} \Phi^{*}\left(Q_{\lambda}^{*}\right)\right) \cap X_{\lambda}^{*}=\{0\}
\end{aligned}
$$

Proof. For each $f \in X_{\bar{\lambda}}^{*}$, then $g=P_{\bar{\lambda}}^{*} g$ and

$$
\begin{aligned}
S^{*}(t) f & =S^{*}(t) P_{\bar{\lambda}}^{*} g=\frac{1}{2 \pi \imath} \int_{\Gamma_{\lambda}} e^{z t}\left(z-A_{p^{\prime}}\right)^{-1} g d z \\
& =e^{\bar{\lambda} t} \frac{1}{2 \pi \imath} \int_{\Gamma_{\bar{\lambda}}} e^{(z-\bar{\lambda}) t}\left(z-A_{p^{\prime}}\right)^{-1} g d z \\
& =e^{\bar{\lambda} t}\left\{\sum_{n=0}^{K_{\lambda}-1} \frac{t^{n}}{n!}\left(\frac{1}{2 \pi \imath} \int_{\Gamma_{\bar{\lambda}}}(z-\bar{\lambda})^{n}\left(z-A_{p^{\prime}}\right)^{-1} g d z\right)\right\} \\
& =e^{\bar{\lambda} t} \sum_{n=0}^{K_{\lambda}-1} \frac{t^{n}}{n!}\left(Q_{\lambda_{,}}^{*}\right)^{n} g
\end{aligned}
$$

Hence, if $f \in N \cap X_{\lambda}^{*}$, in view of above result we can see

$$
e^{\bar{\lambda} t} \sum_{n=0}^{K_{\lambda}-1} \frac{t^{n}}{n!} \Phi^{*}\left(Q_{\bar{\lambda}}^{*}\right)^{n} g=0, \quad t \geq 0
$$

Thercfore $g \in\left(\bigcap_{j=0}^{K_{\lambda}-1} \operatorname{Ker} \Phi^{\perp}\left(Q_{\hat{\lambda}_{j}}^{*}\right)^{n}\right) \cap\left(X_{\hat{\lambda}}^{*}\right)$, here we used that $e^{\lambda t} \sum_{n=0}^{K_{\lambda}-1} \frac{t^{n}}{n!} \Phi^{*}\left(Q_{\lambda_{,}}^{*}\right)^{n} g=0, t \geq 0$ if and only if $\Phi^{*}\left(Q_{\lambda_{\lambda}}^{*}\right)^{n} g=0, \quad n=0, \cdots, K_{\lambda}^{*}-1$.
Now we consider the stabilizability problem for (3.1). A necessary and sufficient consider for stabilizability is given by [5. proposition 3.1].

The following theorem is the relation between the properties of controllability and stabilizability for solution of (3.1).

Tifeorem 3.1. The following statements are equivalent;
(i) For any $g \in L^{p}(\Omega)$, there exists $f \in L^{2}(0, \infty: U)$ such that the mild solution of (3.1) belongs to $L^{2}\left(0, \infty: L^{p}(\Omega)\right)$
(ii) $S(t)$ is λ_{j}-controllable $j=1, \cdots, N$
(iii) $S^{*}(t)$ is $\bar{\lambda}$,-observable $j=1, \cdots, N$.

Proof. It follows from [5. proposition 3.1] that the necessary and sufficient condition (i) is that for $j=1, \cdots, N$.

$$
\left\{x^{*} \in X_{\bar{\lambda}_{j}}^{*}: \Phi^{*}\left(A_{p^{\prime}}-\bar{\lambda}_{j}\right)^{K} x^{*}=0, K=0, \cdots, m_{j}-1\right\}=\{0\} .
$$

If $x^{*} \in X_{\lambda_{1}}^{*}$, then $P_{\bar{\lambda},}^{*}, x^{*}=x^{*}$ and

$$
\begin{aligned}
\Phi^{*}\left(A_{p^{\prime}}-\bar{\lambda}_{\jmath}\right)^{K} x^{*} & =\Phi^{*}\left(A_{p^{\prime}}-\bar{\lambda}_{\jmath}\right)^{K} P_{\bar{\lambda}_{2}}^{*} x^{*} \\
& \leq \Phi^{*}\left(Q_{\bar{\lambda}_{j}}^{*}\right)^{K} x^{*}
\end{aligned}
$$

By virtue of Lemma 3.3 (i) is equivalent to (iii)
Hence this theorem follows from Lemma 3.2.

4. Application for retarded system

In this section we are interested in the retared functional differential equation

$$
\left\{\begin{array}{l}
\frac{d u(t)}{d t}=A_{0} u(t)+A_{1} u(t-h)+\int_{-h}^{0} a(s) A_{2} u(t+s) d s+\Phi_{0} f(t) \tag{4.1}\\
u(0)=g^{0}, u(s)=g^{\prime}(s) \quad \text { a.e } s \in[-h, 0), h>0
\end{array}\right.
$$

where $g=\left(g^{0}, g^{\prime}\right) \in W_{0}^{1, p}(\Omega) \times L^{2}\left(-h, 0: W^{2, p}(\Omega) \cap W_{0}^{1, p}(\Omega)\right)$,
$f \in L^{2}(0, \infty: U), \Phi_{0} \in B\left(c, W_{0}^{1, p}(\Omega)\right), A_{2} \in B\left(\mathcal{D}\left(A_{p}\right), L^{p}(\Omega)\right)$ and $A_{0}=A_{p}$.

In particular, if $\mathrm{p}=1$, then $g \in W_{0}^{1, q}(\Omega) \times L^{2}\left(-h, 0: W_{0}^{1,2}(\Omega) \cap\right.$ $W_{0}^{1, q}(\Omega)$) for $1 \leq q \leq n / n-1$.

Let $Z_{p}=W_{0}^{1, p}(\Omega) \times L^{2}\left(-h, 0: \mathcal{D}\left(A_{p}\right)\right)$ with norm

$$
\|g\|_{2}=\left(\left|g^{0}\right|_{W_{0}^{1, p}(\Omega)}+\int_{-h}^{0}|g(s)|_{\mathcal{D}\left(A_{p}\right)}^{2} d s\right)^{\frac{2}{2}}, g \in Z_{p}
$$

Let $S_{A}(t) ; Z_{p} \longrightarrow M$ be the solution semigroup for (4.1) defined $\left.S_{A}(t) g=(u(t ; g), u(t-0): g)\right)$. for any $g \in Z$ where $u(t ; g)$ is the mild solution of (4.1) (See [5]).

We can rewrite (4.1) as

$$
\left\{\begin{array}{l}
\frac{d}{d t} x(t)=A x(t)+\Phi f(t) \tag{4.2}\\
x(0)=g=\left(g^{0}, g^{\prime}\right)
\end{array}\right.
$$

in the space Z, where $S_{A}(t)=e^{t A}$ and Φ is the operator defined by $\Phi f=\left(\Phi_{0} f, 0\right)$
In what follows we consider the operator A with the assumptions
(3.2) - (3.4), but A_{p} need not be satisfied in this case.

In the remainder of this section by P_{λ} and Q_{λ} we denote the operator mentioned in section with A_{p} replaced by A.

It is easily seen that the whole contents of section 3 in vailed for the system (4.2) as in seen in [8] with this remark we have;

Theorem 4.1. The following statments are equivalent;
(i) For any $g \in Z$, there exists $f \in L^{2}(0, \infty: U)$ such that the mild solution u of (4.1) satisfics

$$
\int_{0}^{\infty}\left\{|u(t)|_{W_{0}^{1, p}(\Omega)}^{2}+\int_{-h}^{0}|u(t+s)|_{\mathcal{D}\left(A_{p}\right)}^{2} d s\right\} d t<\infty
$$

(ii) $\operatorname{Ker}\left(\bar{\lambda}_{j}-A_{p^{\prime}}\right) \cap \operatorname{Ker} \Phi^{*}=\{0\}, j=1, \cdots, N$.

Proof. From Theorem 3.1, it follows that (i) is equivalent to the fact that $S_{A}^{*}(t)$ is $\bar{\lambda}_{j}$-observable, $\jmath=1, \cdots, N$

We have only to prove that the condition (ii) is equivalent that $S^{*}(t)$ is $\bar{\lambda}_{j}$-observable.

Let (ii) be hold and

$$
\phi \in\left(\bigcap_{j=0}^{K_{\lambda}-1} \operatorname{Ker} \Phi^{*}\left(Q_{\lambda_{j}}^{*}\right)^{\prime}\right) \cap Z_{\bar{\lambda}_{\mu}}^{*}, Z_{\lambda_{j}}^{*}=\operatorname{Im} P_{\bar{\lambda}_{2}}^{*} Z
$$

then $\phi \in \operatorname{Ker}\left(\bar{\lambda}-A_{p^{\prime}}\right)^{K \lambda}$ and $\Phi^{*}\left(Q_{\bar{\lambda}_{j}}^{*}\right) \phi=0$ for $j=0, \cdots, K_{\lambda}-1$ here we used that $\left(Q_{\bar{\lambda}_{j}}^{*}\right)^{\prime}=\left(A_{p^{\prime}}-\bar{\lambda}_{j}\right)^{j} P_{\hat{\lambda}_{j}}^{*}$ for $0 \leq \jmath \leq K_{\lambda}-1$ and $P_{\bar{\lambda}}^{*} \phi-0$.

We put $\phi_{1}=\left(\bar{\lambda}_{j}-A_{p^{\prime}}\right)^{K_{\lambda}-1} \phi$ then $\phi_{1} \in \operatorname{Ker}\left(\bar{\lambda}_{3}-A_{p^{\prime}}\right)$,

$$
\Phi^{*} \phi_{1}=\Phi^{*}\left(\bar{\lambda}-A_{p^{\prime}}\right)^{K_{\lambda}-1} \phi=0
$$

In view of (ii) we have $\phi_{1}=0$.
Let $\phi_{2}=\left(\bar{\lambda}-A_{p^{\prime}}\right)^{K_{\lambda}-1} \phi$ then $\phi_{2} \in K \operatorname{Ker}\left(\bar{\lambda}-A_{p^{\prime}}\right)$ and $\Phi^{*} \phi_{2}=\Phi^{*}\left(\bar{\lambda}-A_{p^{\prime}}\right)^{K_{\lambda}-2} \phi=2$, hence we have $\phi_{2}=0$.
Continuing this procedure, we conclude that $\phi=0$.
Conversely, let $\phi \in \operatorname{Ker}\left(\bar{\lambda},-A_{p^{\prime}}\right) \cap \operatorname{Ker} \Phi^{*}$ and
$\left(\bigcap_{j=0}^{K_{\lambda}-1} \operatorname{Ker} \Phi^{*}\left(Q_{\bar{\lambda}_{j}}^{*}\right)^{j}\right) \cap Z_{\lambda_{j}}^{*}\{0\}$ then $\phi \in Z_{\bar{\lambda}_{j}}^{*}$ and $A_{p^{\prime}} \phi=\bar{\lambda}_{j} \phi$.
Hence, since $\phi \in K e r \Phi^{*}$,

$$
\Phi^{*} S^{*}(t) \phi=\Phi^{*}\left(e^{\bar{\lambda} t} \phi\right)=e^{\bar{\lambda} t} \Phi^{*} \phi=0, t \geq 0
$$

therefore $\phi \in \operatorname{Ker} \Phi^{*} S^{*}(t) \cap Z_{\lambda_{j}}^{*}=\left(\bigcap_{j=0}^{K_{\lambda}-1} \operatorname{Ker} \Phi^{*}\left(Q_{\lambda_{j}}^{*}\right)^{\prime}\right) \cap Z_{\lambda_{j}}^{*}=\{0\}$.

References

1. S. Agmon, On the eigenfunctions and on the eigenvalues of general elliptic boundary value problems, Comm. Pure. Appl. Math. 15 (1963), 119-147.
2. D. L. Burkholder, A geometrical charaterzzation of Banach spaces in which martingale difference sequences are unconditional, Ann. Probab. 9 (1981), 997-1011.
3. G. Da Prato and A. Lunardi, Stabrlzzabulity of integrodifferential parabolic equations, to appear J. Integ. Eqs. and Appl .
4. G. Dore and A. Venni, On the closedness of the sum of two closed operators, Math. Z. 196 (1987), 189-201.
5. J. M. Jeong, Stabilizabihty of retared functional differential equation in Helbert space, to appear Osaka J. Math..
6. T. Kato, Pertubation theory 2nd Ed., Springer, Berlin-Heidelberg-New York, 1976.
7. S. Nakagiri, Structural properties of functional differential equations in Banach spaces, Osaka J Math 25 (1988), 353-398.
8. S. Nakagiri and M. Yamamoto, Controllability and observability of linear retared systems in Banach spaces, to appear..
9. R. Seely, Norms and domains of the complex power A_{B}^{Z}, Amer. J. Math 93 (1971), 299-309.
10. T. Suzuki and M. Yamamoto, Observabihty, Controllability and feedback stabilizability for evolution equations I, Japan J. Appl .Math. 2 (1985), 211-228.
11. T. Tanabe, Equations of evolution, Pitman, London, 1979.
12. R. Triggiani, Exteniaons of rank conditaons for controllabilaty and observability to Banach spaces and unbounded operators, SIAM. J. Control Optim 14 (1976), 313-338.

13 K. Yosida, Functional analysts 3rd Ed., Springer, Berlm-Gottingen-Heidelberg, 1980.

Department of Mathematics
Kyung Nam University
Masan 630-701, Korea

[^0]: Received June 22,1992

