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STABILIZABILITY AND CONTROL PROPERTIES
FOR AN EVOLUTION EQUATION

KwANG PAK PARK AND JIN MUN JEONG

1. Introduction

The main results of this paper are to derive an estimate for A
where s € R and A is the realization of an elliptic operators with
Dirichlet boundary condition and concerned with some controll results
of the following equation

u'(t) + Au(t) = f(3). 0<t<T
(1.1)
u{0) =0

where —A 1s the infinitesimal generator of an analytic semigroup in
a complex Banach space X. The space X is colled §-convex if there
exists a real valued function é§ on X x X having the properties

6(x,-) 18 convex for eachz € X
é(z,y) = 8(y,z)
§zy) <lz+yl of |z{<1 <y

and 5(0,0) > 0.

For example, the sobolev space L?{({1) and I? are §-convex for 1 <
p < o0, while L'(R,R) and I? are not.

In [9], R. Seely established a similar results by estimating for the L?
norms of the complex power AB* where AB is an elliptic operator 4
whose domain is defined by well posed boundary condition Bu=4(.

From the R. Scely’s estimate of AB*1* for z < 0,we now can derive
the estimate of A'* for s € R where A is generlized second order
elliptic operator and for any f € L™(0,T; LP(f2)) and 1 < 7 < oo the
equation (1.1) has a solution u € WH7(0,T; Wy?) N L0, T; D(A))
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where W™P(1) is the sct of all functions whose derivative up to degree
m in distribution sense bclong to LP(2) and the closure of C§*(f2) in
Wr(2) is denoted by W™?(Q).

In section 3, we consider a necessary and sufficient condition for
controllability for the general evolution equation in reflexive Banach
space X. The criteria for controllability can be stated in terms of A*,
the adjoint operator of the infinitesimal gencrator A.

We also derive to the relation between stabilizability of solution and
the controllability for the equation (1.1).

In section 4, we give the example of retarded system.In this case
many author’s have discussed these concepts for retarded and neutral
systems [3,5,7].

In this note, we deal with also the stabilizability of retarded case,
and the relation between stabilizable and controllable.

2. The group property of A

Let € be a bounded domain in R™ with smooth boundary 9G.
If we set

n

3} 0 = 0
(2.1) A= Z 5}‘:(“:1‘@) + ; bté—x—‘ +c

t,1=1

where a,; = a,, € C'(Q) and a,,(z) is positive definite uniformly in
Q, b € CY{Q) and ¢ € L*®(Q), then the dual operator A’ of A is

(2.2) 4=-Y a2 v Zayse
70,0z, L O

t,)=1

Let A, be L?(Q)-realization with boundary value problem, that is,
(2.3)
W2r( )N W, ?(Q) = {uc W?(Q): ulsq= 0}
if 1<p<oo
{uy; ue WH(Q), AucLY(Q) forl<g< %1,
sif p=1

and Ayu = Au for u € D(A,;), then —A, generates an analytic semi-
groups in LP(Q).

D(Ap) =
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Similarly, we define

D(Ay = W2 (Q) N W, T (Q),
Apu = A'u

+==1

i
P

AR

for v € D(Ay ), then —A, also generates an analytic semigroup in
¥ (Q).

We consider the regular Dirichlet boundary problem,now.

An elliptic Dirichlet boundary value problem is regular problem if
its system has the smoothness assumptions on the domain and the
coeflicient introduced above all.

For the sake of simplicity,we assume that 0 € p(4,)and 0 € p(4,).

Since —A, gencrates an analytic semigroup, there exists w € (0, F
such that

N3

(2.4) LT={ :w<agA<2r-r} C p(4p)
We can define

1

T 2m Jp

(Ap)? N(A—-4,)'d\, Rez<0

)

where the path I' runs in the resolvent set of A, from oo™ to ooe™*?
w< <.

In [{a)}, it is established that there exists a constant ¢ such that

| Azt ||, < ce™@) | x < 0 where ¢ depands on A4,, p and v is the
constant in (2.4).

LEMMA 2.1. A, s € R is a bounded if and only if A7V is a
bounded for any ¢ > 0.

Proof. Let A* be a bounded for any s € R. It is known that therc
exists a constant A > 0 such that

A~ )< M

for 0 < ¢ € 1.
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For any z € D(A4) and a > 0.
Az —z = A""A Az —z = (47" - A Az — 0

asa —— 1 (a | 1)
This shows that A™* — I strongly as a — 0, therefore it follows
that for any € > 0.
A i< M

for the sufficiently large constant M > 0.
We have
| A==t =] AmeA™ | < M || A™ |

where | A™* < M
Hence, A=+ is a bounded for each € > 0.
Conversely, for any € > 0, let [| A7¢*** || be bounded,
that is §] A~°*** || < c. For any z € D(A")

A—c+"$ — A-—cAux — At'sx
as e — 0. For ¢ € L? and y € D(A%)

| A= — Ametreg ||| A7z —y) |
F| ATy ATy |+ | ATy - o) |
S2llz—yll + || A7y — ATy ||

Hence the sequence { A™**'*z} is Cauchy sequence, there is z € L?
such that A=*%*z — zase ~— 0.

Since A=**%z = A™A~*z — z and A~ — =z it follows from
closedness of A that = € D(A"). and A**z = 2. Therefore A* is a
bounded in view of closed graph theorem.

LEMMA 2.2. For any s € R, there exist a constant ¢ such that
|l A* ||, £ ce”®,where ¢ depand on A, ,p and v

This Lemma follows from Lemma 2.1 and remarks before Lemma

2.1.
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REMARK 1. For any —co < s < o0, let 4}’ be a bounded and
is+at t
ASTH = APAY.
If AY is strongly continuous, then there exists constants ¢ > 0 and
v > 0 such that

A< cel
in view of properties of groups of bounded operators.

REMARK 2. In the case where A, is not invertible, R.Seely proved

that .
ATVAf = f-Pof,  feD(4,)
lin}’A;fzf—Pof, feLl, Rez <0
Z—
where Py = ;- fwze(/\-—Ap)“chk be the projection on the generalized
null space of A, and also proved that
S§* = A] + Po1sasemigroup  and
§* — I stronly asz — 0
while Lemma 2.1 is noted in terms of
15 11< cetll.
The allowable Banach spaces in this note are the é-convex space. We
know that the space X is §-convex if and only if the Hilbert transform
is a bounded operator on LI(R, X}, 1 < ¢ < oo.

From the é-convexity of LP(1} and Lemma 2.2 we obtain the fol-
lowing theorem by using results of G.Dore and A.Venni.

THEOREM 2.1. Let A, be an operator defined by (2.3), then for any
fe L70,T: L?()) the Cauch problem

{ u'(t) + 4,(t) = f(1)
u(0) =0
has a unique solution
w € WH(0,T : LP(Q) N LT0, T : W2P(Q) n WhH2(Q)),
l<p<oo
and

w€ W0, T LHQ) N L7(0, T : W>H Q) n Whi(Q)),

T
1<g< ——, p=1
n—1
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REMARK 3. Let [, -]y be a complex interpolace space,
then [W5P() 0 Wy P(Q), L (Q)]y = Wy
As is seen in {11,Lemma 5.5.1],we have

WL2(0, T : LP(Q)) N L2(0, T : W2P(Q) N WP ()
C C([0,T] : Whr)
C C(0,T) : (D(A4,) N ()3 2)

where D(A?) = W2P(Q) N W, ?(0)

3. The relation between stabilizability of solution of (3.1)
and controllability

Let U be complex Banach spaces.
We consider the following equation

- { Sult) = Apult) + BF()
x(O) = Up

where A, is the operator in section 2 and & € B(u, W, ?(Q)).
We assume

(3.2) a(A,) 0 {A:Red =0} = 4.

Set 04 = o(A,)N{A: ReA >0}, o = o(Ap)N{): Rel < 0}

‘We assume also that

(3.3) gy = {A1, - , AN}

(3.4) ~wq = sup{Red: A€o} <0
and for each j = 1,--- | N, the spectral projection
(3.5) e

2nz

/ (A= A,)"tdA
1",\J
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is the projection on generalized null space of 4, with finite rank, where
I\, 1s a small circle centered at A, such that it surrounds no point of
o(A,) cxcept A,.

If A, has a compact resolvent, then above assumptions is hold.

If A, €04 j=1,---,N, then we have the Laurent expansion at
A=A, s

n=0
where Q?\, =Py, Qx = (A - X;)P,, and Ry(}) is the analytic part

of (A\—A)"1at A = A, hence }, is a pole of (A — A)~! whose order is
denoted by Ky, .

Morcover the order of a pole X of (z — Ar)~1 s equal to K.
The above operator @5, is defind by

1
27

Qx, = (u—A)(A A)'du

I\;

Wehave @, 7 =0, ImQ, C ImP, .
We put Xy, = ImP,,.

Let &f € L?(0,00 : Wy P()) and u(t) be the mild solution of the
equation (3.1) i.e.,

u(t) = s(thup + /0‘ S(t — s)®f(s)ds

We define the sets of attainability R and the unobservable N by

R= {]: S(t—s)Pu(s):t >0, u € L2(0,00 : U)} € Wy ?(Q).

N ={) Ker®* $*(t) c L*(Q)
1>0
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DEFINITION 3.1.

(1) For any A € o4 , S(t) = e'*» is A — controllable if CI(R) D
X

(2) For any A€oy ,S* (1) = ¢4 is X — observable if NNX} =

{0}
The following Lemma is proved in (7. Theorem 7.2].
LEMMA 3.1. Forany A€ o4
LP(Q) = Ker(A — A,)* @ Im(X — A,)K>,
Xy = ImPy = Ker(h — 4,)%
LY (Q) = Ker(D — 4,)5 @ Im(X — A,)%,
X} =ImP} = Ker(A — Ap ).
If X is a pole of (z — A)™! then above Lemma is also hold.

LEMMA 3.2. The following statements are equivalent ;
Forany A € o4

(i)S(t) 13 A — controllable
(ii)S*(t) is X — observable

Proof. By the Hahn-Banach theorem,the necessary and sufficuently
condition for (1) is that R+ C X
From the Lemma 3.1 and duality theorem

X3 = (ImP\)! = Ker P} = Im(X — 4, )"*

Rt = (U{/D S(t — s)®u(s)ds : u € L*(0,00 : U)})*

>0

= 1[50~ 2u(s)as :w e 0,00 U}
t>0 “0

= ﬂ Ker®d151(t)
>0

=N
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Hence 1n view of Lemma 3.1.

NnX: = Im(d-4,) nX; = {0}

LEMMA 3.3. The following statements are equivalent ;

(i)S*(t) is X — observable
Ky-1

@)X () Ker@*(Q)n X3 = {0}

=1

Proof. For each f € X3, then g = P{g and
S0 = S OPg = 5 [ (e - ) ads
A Cx

)\t 1 / e(z—i)f(z.__ AP‘)_lgdz

2711 Jr,
K- 1
Xt n
=Y g [ e Wt - A0 ade)
5 f\,\ l
= Z n‘(QA’)n
n=0

Hence, if f € NN X1, in view of above result we can see

Ky-1

t" n
‘Z —®*(Q3)"g =0, t>0.

Thercfore g € (ﬂ"“ ! I{er(I)J'(Qf—\ )*) N (X3), here we used that

,\tzfﬁ -1 t“q, (Q' )“g“(l t > 0 if and only if
$(Q; )9 =0, n=0, Kx~1

Now we consider the stabilizability problem for (3.1}). A necessary
and sufficient consider for stabilizability is given by [5. proposition
3.1}

The following theorem is the relation between the properties of con-
trollability and stabilizability for solution of {3.1).
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THEOREM 3.1. The following statements are equivalent;

(i) For any g € L?(R), there exists f € L*(0,c0 : U) such that the
mild solution of (3.1) belongs to L*(0,00 : LP(2))

(ii) S(¢) is Aj-controllable j = 1,--- |N

(iii) S*(t) is A,-observable j = 1,--- | N.

Proof. 1t follows from [5. proposition 3.1] that the necessary and
sufficient condition (i) is that for j =1,.-- | N.

{z* € X5 : 8" (4py —1,)*z* =0, K=0,---,m; —1} = {0}.
If z* € X}\*,’ then Pj'; z* = z* and
* Y VK% _ g+ _1 N * %
@ (Ap: —AJ) ¥ =9 (Apl /\}) P)«,x
< (@5, )=

By virtue of Lemma 3.3 (i) is equivalent to (iii)
Hence this theorem follows from Lemma 3.2.

4. Application for retarded system

In this section we are interested in the retared functional differential
equation

(4.1) o
{ dl:i(tt) = Aou(t) + Aru(t — k) + /—h a(s)Azult + s)ds + B0 f(2)

u(0) =¢°% u(s)=g'(s) ae s€[-h,0), >0

where g = (g°,¢') € Wy'P(Q) x L2(—h,0 : W22(Q) N Wa2(R2)),

f € L¥0,00: U), & € B(c, W, P(Q)), A, € B(D(4,), L*(Q)) and
Ao - AP‘

In particular, if p=1, then ¢ € W}'9(Q) x L¥(—h,0 : W) A(Q)n
Wy (Q)) for 1 < ¢ <n/n—1.

Let Z, = W) 'P(Q) x L2(~h,0: D(A,)) with norm

¢
1
\ | g(s) ﬁ)(A,} ds)?, g€ Z,.

9= (19° luzoay + |
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Let Sa(t); Z, — M be the solution semigroup for (4.1) defined
Sa(t)g = (u(t; 9),u(t — 0) : g)). for any g € Z where u(t; g) is the
mild solution of (4.1) (See [5]).

We can rewrite (4.1) as

(4.2) %x(t) = Az(t) + (1)
z(0) =g =(9°¢")

in the space Z, where S4(t) = e and ® is the operator defined by
Qf = (CI)Of; 0)
In what follows we consider the operator 4 with the assumptions
(3.2) - (3.4), but A, need not be satisfied in this case.
In the remainder of this section by Py and @5 we denote the operator
mentioned in section with A, replaced by A.
It 1s easily seen that the whole contents of section 3 in vailed for the
system (4.2} as 1n seen in [8] with this remark we have ;

THEOREM 4.1. The following statments are equivalent;

(1) For any g € Z, there exists f € L%(0,c0 : U) such that the mild
solution u of (4.1) satisfics

o ¢
| AT By + [ 10t 6) B,y de)it < o0

(i) Ker(A, — 4p) N Kerd* = {0}, j=1,---,N.
Proof. From Theorem 3.1, it follows that (i) is cquivalent to the fact
that S%(t) is A, -observable, y =1,--- | N

We have only to prove that the condition (ii) is equivalent that 5*(¢)
is Aj-observable.

Let (ii) be hold and
Ky—1
ge( ] Ker®(Q3))NZ;, 25 =ImP} Z
7=0
then ¢ € Ker(XA — 4, )** and 9*(Q3,)¢ =0forj =0, ,Ky—1
here we used that (Q;} Y =(A4p — )\J)JJ"’-\‘J1 for 0 € 3 < Ky —1 and
Pi¢—0.
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th

10.

11.

12

We put ¢ = (A; — 4, )53 714 then ¢, € Ker(X; — Ay ),
¢y = ©*(A-4,) 16 =0

In view of (ii) we have ¢, = 0.
Let ¢2 = (A — A, )$>1¢ then ¢2 € Ker(X ~ Ap) and
@* ¢y = ®*(A — A,)¥> 724 = 2, hence we have ¢ = 0.
Continuing this procedure, we conclude that ¢ = 0.
Conversely, let ¢ € Ker(X, — Ay} N Ker®* and

(N2 Ker®*(Q% )) 1 24 {0} then ¢ € Z§ and Apé = 3,4,
Hence, since ¢ € Kerd*,

3*S*(t)p = B*(e @) = e MB*p =10, t > 0.

3=0

erefore ¢ € Ker®*S*(t)NZ3 = (N*? Ker®*(Q3,))nZ3, = {0}
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