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1. Introduction

As a complex analogue to the Wey! conformal curvature tensor,
S.S. Eum [2] introducted the so-called cosymplectic Bochner curvature
tensor and studied its fundamental properties.

Recently, the cosymplectic manifolds have studied by G.D. Ludden
[5] in the theory of submanifolds and T. Kashiwada [3] studied some
conditions in order that the Bochner curvature tensor vanishes in the
Kaehler manifolds. Similar studies were made by M. Seino [6] in the
contact Bochner curvature tensor case.

The purpose of this paper is to study necessary and sufficient con-
ditions for the cosymplectic Bochner curvature tensor to vanish in the
cosymplectic manifolds.

2. Cosymplectic Bochner curvature tensor

Let M be an m-dimensional cosymplectic manifold with structure
(#,€,7m,9), that is, a manifold M which admits a 1-form 7, a vector
field £, a metric tensor g satisfying

n(€) =1, X =-X+9(X), ¢£=0,

B0 e x) =), 6(8X,6Y) = (X, ¥) —n(X)n(¥)

(2.2) Vx¢=0, Vx{=0

for any vector fields X and Y, where V denotes the Riemannian con-
nection of g. The fundamental 2-form @ is defined by

B(X,Y) = ¢(¢X,Y).
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The cosymplectic Bochner curvature B(X,Y, Z,U)} = ¢(B(X,Y)Z,U)
is defined by
(2.3)

B(X’ Y, Z, U) = I\’(Xv Y,Z,U) - [8(Y, Z){g(X, U) - W(X)W(U)}

= S(X, 2){g(V, U) = n(Y)n(U)} + S(X, UNg(Y, 2) = n(Y)n(Z)}
= SV, U){(9(X, 2} - n(XIn(2)} - &(X,U)H(Z,Y)
+®(Y,U)H(Z,X) - &Y, Z)H(U,X) + &(X, Z)H(U,Y)
+28(Z, UYH(Y, X) +28(X,Y)H(U, Z)}/(m + 3)

+ QUg(X, U) = n(X)m(U)} - {9(¥, Z) — n(¥)n(2)}

— g U) = (¥ m(U)} - {9(X, Z) = n(X)n(2)}

— ®(X,U)®(Z,Y) + &(Y,U)3(%,X)

+28(X,Y)®(U, Z)]/(m + 1)(m + 3),

where
H(X,Y)=S(¢X,Y)=—-H(Y, X),

K(X,Y,Z2,U) = g(K(X,Y)Z,U)

is the Riemannian curvature tensor, S is the Ricci curvature and @ is
the scalar curvature of M.

It is easily seen that the cosymplectic Bochner curvature tensor sat-
isfies the following conditions;

B(X,Y,2,U) = —B(Y, X, Z,U),
B(X,Y,Z,U)= —B(X,Y,U, 2),

(2.4) B(X,Y,2,U) = B(Z,U,X,Y),
B(X,Y,Z,U)+B(Y,Z,X,U) + B(Z,X,Y,U) =0,
B(X,Y,$2,2)=0, B(£,X,Y,Z)=0.

Let g = (m—1)/2 and take a ¢ - basis {e1,--- ,em} at each point of M

such that ej,- - ,eq, €041 = de1, -+, €20 = deg, e = £. We write the
basis by {ey,exs = dey, ¢} and assume that the indices 7,7, %,--- run
over the range {1,2,--- ,m}, A, g, ,- - - run over the range {1,2,--- , ¢}

and r,s,t,u,-+- take {1,2,--- ,2¢}. Then we have the following com-
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ponents and relations with respect to the ¢-basis {ex, ers, €} ;

Pure =—Pria=1, @,0=0 (J#A"), Pmm=0,
Kipape + Kipasp =0,

Kymma + I mmar =0,

Sxep = Sas  Sape = —Sxep

Smm =0, San=8wm=0,

(2,5)

where ® 5, = ®(ex, €4), Kapur = K(ea, €4, €x, €7} and Sy, = S(ea, €,).

3. Theorems

R.L. Bishop and S.I. Goldberg [1] proved

PROPOSITION 3.1. Let R be a curvature like tensor, i.e., R satisfies
(1) R(X,Y,Z,U)=~-R(Y, X, 2,U),

(2) R(X’Y’ZaU):R(Z7U,X)Y),

(3) the first Bianchi’s identity.

Then R = 0 if and only if R(X,Y,X,Y) = 0 for every orthonormal
basis.

In the case of a Kachlerian manifold, as a special case of Proposition
3.1, T. Kashiwada [3] showed that, for R = 0, it suffices that R,,, =0
for every J-basis {ex, exr = Jer}, where J is the almost complex strue-
ture. Since (2.4) guarantee that the cosymplectic Bochner curvature

tensor B is a curvature like tensor and by means of V¢ = 0 and (2.4),
we see that

PRroPoOSITION 3.2. In an m-dimensional cosymplectic manifold, the
cosymplectic Bochner curvature tensor vanishes if and only if B(e,,¢,,
er,¢;) = 0 for every ¢-basis.

In {4], the present author proved

LEMMA 3.3. Let M be an m(> 9)-dimensional cosymplectic man-
ifold. The cosymplectic Bochner curvature tensor B of M vanishes if
and only if K,e,, = 0 (||, sl i8], lu| #), where writing |r| = X for



72 Byung Hak Kim

r =X or X* and |rl,|sl,|¢], ul # means that Irl,ls|, |t} and lu| differ
from one another.

Putting
Bijin = Kiyon + Uigun/(m + 1)(m + 3),

we have

Brsor = Kpsor + Urur/(m + 1)(m + 3)’

where writing

Urasr = “‘(m + 1)(Srr + Sss) + Q (lrl % ISD’

(3.1) BA,\-,\c,\ = I(AA‘XUA - 85,\,\/(1’71, + 3) + 4Q/(m 4 1)(m + 3)

by use of Hyx» = Sxx = Hx-a and (2.5).

THEOREM 3.4. In an m(> 9)-dimensional cosymplectic manifold
M, the following relations are equivalent to one another at every point
pof M.

(1) The cosymplectic Bochner curvature tensor B(p) = 0.

(2) For every ¢-basis at p,

Alea,exc) + Alew,epe ) = 8(en,ens) (A # ),

where A(X,Y) means the sectional curvature with respect to the plane
spanned by X and Y.
(83) For each ¢-holomorphic 8-plane W in T,(M),

kp(W,B) = A(Cl, 62) + A(Cg, 64)
is independent of ¢-basis B = {ey,--- ,dey,--- ,peq} of W.
(4) For every orthogonal 8-vectors {es, -+ ,eq, ey, -, deq} of
T,(M),
Aley,er) + Aes, eq) = Aley, eq) + A(ez, €3).

Proof. (1) «— (2) have proved in [4].
(1) ~ (3) : Assume that B(p) = 0, then for a ¢-basis, it follows

(32) Kraar = (Ser + Ssa)/(m +3) + Q/(m + 1)(m +3) (Irl,Is| ).
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B = {e},e3,e3,64,de1,Pe2,de3, deq}, and
B = {e’xa6'2,33,62,¢€'1,¢6§,¢65, ée;}

be bases of W C T,(M). We construct two bases of T5(M ) such that
J = {ely"' ’eqs¢ela" : 7¢€{D£}

fl = {elly'” ,62,65,'” ’cqvqsellv"' ,éwei,q&es,--- aéeqaé})

then we have

Afeg, ez} + Ales,eq) = {S11 + S22 + Saz + Sus}/(m + 3)

(3-3) +2Q/(m + 1)}(m + 3),

by use of (3.2).

Let S;; and S), be components of the Ricci curvature with respect
to the bases F and F', respectively. So, as @ = XLS,, = TSI, and
Smm = Spom = 0, San = 5, and Sxexe = Syeper (X > 4), we have
S Sn =32 S Hence, by virtue of (3.3), we see that k,(W,B)
is independent of B.

(3) — (4) is trivial.

(4) — (1) : Let {ey,--- ,eq,€1,-- -, €4, £} be an arbitrary ¢-basis
of Tp(M). For {e.,ex, ey, €y, dex, dex, deu, de, }, by assumptions,

I{&z\)\& + I\’Iu/up = I{ICVVK + I{)\ppl'

We take anothor orthonomal vectors {e,, €}, €}, €y, dex, €}, pe,, de,}
such that

e\ = pex +we,, €, = —wex+ pe, (p° + w? =1, pw # 0).
Since A(ex,€)\) + A(e),, er) = Alex, ) + A€l €},), it follows
(3'4) I{Aﬁ.xu = I{z\uuu

and 50 g((k(ex,€))el, ev) = g(K(ex, €}, )e),, e.) by use of the fact that
(3.4) is true for every ¢-basis. Hence we get Koy + Kepor = 0
and then K .y, = 0 by the first Bianchi’s identity. Replacing ex —
er, ex— ey, -, etc, weobtain Krgu =0 (|rf,{s],[¢[, |u| #). Thus,
by Lemma 3.3, the cosymplectic Bochner curvature tensor vanishes.
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REMARK. It is well known that the cosymplectic Bochner curvature
tensor B vanishes in the cosymplectic space form. But the converse is
not true, because the locally product manifold M = M;(c) x Ma(—c¢) x
E' of constant holomorphic sectional curvature ¢(¢ > 0) and —c¢ with
dimM; + dimM; = 2¢ > 4 atid min{dimM,,dimM;} > 2 is a cosym-
plectic manifold with vanishing cosymplectic Bochner curvature tensor.
But M is not a cosymplectic space form.
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