Pusan Kyŏngnam Math. J. 8(1992), No. 1, pp. 63-67

ON Λ-ANNIHILATORS AND PRIME Λ-SEMIMODULES

SUNG MIN HONG AND JONG CHUL YI

In [3], M. Takahashi introduced the notion of Λ -semimodules and studied elementary properties of semimodules. In this paper we study Λ -annihilators and prime Λ -semimodules. First of all, we recall the basic concepts of Λ -semimodules([3], [4]).

A semimodule A = (A, +, 0) consists of a set A, a map $+ : A \times A \rightarrow A$ and an element 0 of A such that always

 $(1) \quad x+y=y+x,$

(2)
$$(x+y) + z = x + (y+z),$$

 $(3) \quad x+0=x,$

for all $x, y, z \in A$.

A subset B of a semimodule A is a sub-semimodule of A if $0 \in B$ and if $x, y \in B$ implies $x + y \in B$.

A semiring with unit $1 \Lambda = (\Lambda, +, 0, \cdot, 1)$ consists of two data:

(4) $(\Lambda, +, 0)$ is a semimodule,

(5) $(\Lambda, \cdot, 1)$ is a semigroup with 1,

such that always $(\lambda + \mu) \cdot \tau = \lambda \cdot \tau + \mu \cdot \tau$, $\lambda \cdot (\mu + \tau) = \lambda \cdot \mu + \lambda \cdot \tau$ and $0 \cdot \tau = \tau \cdot 0 = 0$. When there is no danger of confusion, we would denote $\lambda \cdot \mu$ by $\lambda \mu$.

Let $\Lambda = (\Lambda, +, 0, \cdot, 1)$ be a semiring. A (left) Λ -semimodule is a semimodule A = (A, +, 0) together with a map $u : \Lambda \times A \to A$ written $u(\lambda, x) = \lambda x$, such that always

- (6) $\lambda(x+y) = \lambda x + \lambda y$,
- (7) $(\lambda + \mu)x = \lambda x + \mu x$,
- (8) $(\lambda \mu)x = \lambda(\mu x),$
- $(9) \quad 1x = x,$
- (10) $\lambda 0 = 0x = 0.$

A subset B of a (left) Λ -semimodule A is a (left) sub- Λ -semimodule of A if $x, y \in B$ implies $x + y \in B$ and if $\lambda \in \Lambda$, $x \in B$ implies $\lambda x \in B$.

Given two Λ -semimodules A and B, a Λ -homomorphism(or a homomorphism of Λ -semimodules) $u : A \to B$ is a homomorphism of

Received June 5, 1992

semimodules such that $u(\lambda x) = \lambda(u(x))$ for all $x \in A, \lambda \in \Lambda$. For a Λ -homomorphism $u : A \to B$, if u(a) = u(a') implies a = a', we say that u is a Λ -monomorphism, while if $b \in B$ implies b = u(a) for some $a \in A$, we say that u is a Λ -epimorphism. Finally u is a Λ -isomorphism if and only if u is both a Λ -monomorphism and a Λ -epimorphism, we denote $u : A \simeq B$.

Let Λ be a semiring with 1. For two Λ -semimodules A and B, consider a Λ -homomorphism $u : A \to B$. Then we define Ker(u), Im(u) and u(A) as follows:

$$Ker(u) = \{a \in A | u(a) = 0\},\$$

$$Im(u) = \{b \in B | b + u(a) = u(a') \text{ for some } a, a' \in A\}$$

and

$$u(A) = \{b \in B | b = u(a) \text{ for some } a \in A\}$$

Ker(u) is called the kernel of u, and Im(u) is called the image of u, while u(A) is called the proper image of u. Then Ker(u) is a sub- Λ semimodule of A, and both Im(u) and u(A) are sub- Λ -semimodule of B such that $u(A) \subset Im(u) \subset B$.

1. A-annihilators

DEFINITION 1.1. Let Λ be a semiring. A subset I of Λ is a left(right) ideal of Λ if (I, +, 0) is a sub-semimodule of $(\Lambda, +, 0)$ and if $\Lambda I \subset I(I\Lambda \subset I)$. If I is both a left and a right ideal of Λ , I is called an ideal of Λ .

For any semiring Λ , Λ itself and $\{0\}$ are left(right) ideals.

DEFINITION 1.2. Let A be a (left) Λ -semimodule. Then for each $X \subset A$, the (left) Λ -annihilator of X in Λ is

$$l_{\Lambda}(X) = \{ \lambda \in \Lambda | \lambda x = 0 \text{ for all } x \in X \},\$$

and for each $I \subset \Lambda$, the (right) Λ -annihilator of I in A is

$$r_A(I) = \{a \in A | \lambda a = 0 \text{ for all } \lambda \in I\}.$$

THEOREM 1.3. Let Λ , Γ be two semirings and let ${}_{\Lambda}A_{\Gamma}$ a left Λ -right Γ -bisemimodule, let $X \subset A$ and $I \subset \Lambda$. Then

- (11) $l_{\Lambda}(X)$ is a left ideal of Λ .
- (12) $r_A(I)$ is a right sub- Γ -semimodule of A_{Γ} .

Proof. (11) Obviously $0 \in l_{\Lambda}(X)$. If $\lambda, \mu \in l_{\Lambda}(X)$, then $\lambda x = 0$ and $\mu x = 0$ for all $x \in X$. It follows that $(\lambda + \mu)x = \lambda x + \mu x = 0$ for all $x \in X$. Hence $\lambda + \mu \in l_{\Lambda}(X)$. This shows that $l_{\Lambda}(X)$ is a subsemimodule of Λ . Put $\mu \in l_{\Lambda}(X)$. Then $\mu x = 0$ for all $x \in X$. For any $\lambda \in \Lambda$, $(\lambda \mu)x = \lambda(\mu x) = 0$ for all $x \in X$. Hence $\lambda \mu \in l_{\Lambda}(X)$. This shows that $\Lambda l_{\Lambda}(X) \subset l_{\Lambda}(X)$.

(12) If $a, b \in r_A(I)$, then $\lambda a = 0$ and $\lambda b = 0$ for any $\lambda \in I$. It follows that $\lambda(a+b) = \lambda a + \lambda b = 0$ for all $\lambda \in I$, and hence $a+b \in r_A(I)$. For any $\gamma \in \Gamma$, $\lambda(a\gamma) = (\lambda a)\gamma = 0\gamma = 0$. Hence $a\gamma \in r_A(I)$.

THEOREM 1.4. If $u: A \to B$ is a homomorphism of Λ -semimodules such that Im(u) = B, then $l_{\Lambda}(A) \subset l_{\Lambda}(B)$.

Proof. If $\lambda \in l_{\Lambda}(A)$, then $\lambda a = 0$ for all $a \in A$. Since Im(u) = B, for any $b \in B$, there exist $a, a' \in A$ such that b + u(a) = u(a'). Therefore $\lambda b + \lambda u(a) = \lambda u(a')$ for all $b \in B$. Since $\lambda u(a) = u(\lambda a) = 0$ and $\lambda u(a') = u(\lambda a') = 0$, we have $\lambda b = 0$ and hence $\lambda \in l_{\Lambda}(B)$.

THEOREM 1.5. Let A be a (left) Λ -semimodule and let X, Y be subsets of A and I, J subsets of Λ . Then we have the followings:

- (13) $X \subset Y$ implies $l_{\Lambda}(X) \supset l_{\Lambda}(Y)$,
- (14) $I \subset J$ implies $r_A(I) \supset r_A(J)$,
- (15) $X \subset r_A l_\Lambda(X),$
- (16) $I \subset l_{\Lambda}r_A(I)$,
- (17) $l_{\Lambda}(X) = l_{\Lambda}r_{A}l_{\Lambda}(X),$
- (18) $r_A(I) = r_A l_\Lambda r_A(I).$

Proof. (13 - 16) are easy. (17) and (18) follow from (13 - 16).

2. Prime A-semimodules

DEFINITION 2.1. A Λ -semimodule A is called prime provided $A \neq 0$ and $l_{\Lambda}(M) = l_{\Lambda}(A)$ for all nonzero sub- Λ -semimodule M of A. THEOREM 2.2. Every nonzero sub- Λ -semimodule of a prime Λ -semimodule is prime.

Proof. Let A be a prime Λ -semimodule and let M be any nonzero sub- Λ -semimodule of A. Then we have $l_{\Lambda}(M) = l_{\Lambda}(A)$. If N is any nonzero sub- Λ -semimodule of M, then N is also a sub- Λ -semimodule of A, and $l_{\Lambda}(N) = l_{\Lambda}(A)$. Therefore we get $l_{\Lambda}(N) = l_{\Lambda}(M)$, it follows that M is prime.

By above Theorem 2.2, we have the following corollaries.

COROLLARY 2.3. Let $u : A \to B$ be a nonzero Λ -homomorphism. If B is a prime Λ -semimodule, then Im(u) and u(A) are primes.

COROLLARY 2.4. Let $u : A \to B$ be a Λ -homomorphism. If A is a prime Λ -semimodule, then Ker(u) is prime.

COROLLARY 2.5. Let $u: A \to B$ be a Λ -homomorphism. Then we have

(19) The sequence $0 \longrightarrow Coim(u) \xrightarrow{u_*} Im(u) \longrightarrow 0$ is exact.

(20) If u is k-regular and if B is a prime Λ -semimodule, then Coim(u) is prime.

Proof. (19). See [3].

(20). Since u is k-regular if and only if u_* is injective if and only if $Coim(u) \simeq u(A)$, we have the result by Corollary 2.3.

THEOREM 2.6. If A is a Λ -semimodule such that $l_{\Lambda}(A) = 0$, then A is a prime Λ -semimodule.

Proof. Since $l_{\Lambda}(A) = 0$, we have $l_{\Lambda}(M) = l_{\Lambda}(A)$ for any nonzero sub- Λ -semimodule M of A. Therefore A is prime.

References

- 1. Sze-Tsen Hu, Introduction to homological algebra, Holden-Day, Inc., London, 1968.
- 2. D. G. Northcott, An introduction to homological algebra, Cambridge University Press, London, 1960
- 3. M. Takahashi, On the bordism categories II-elementary properties of semimodules, Math. Seminar Notes 9 (1981), 495-530.
- M. Takahashi, On the bordism categories III-functors Hom and ⊗ for semimodules, Math. Seminar Notes 10 (1982), 211-236.

Department of Mathematics Gyeongsang National University Chinju 660-701, Korea