Pusan Kyöngnam Math J. 8(1992), No 1, pp. 59-62

A NOTE ON FUZZY SUBALGEBRAS OF A BCK/BCI-ALGEBRA

Y. B. JUN*, J. MENG** AND S. M. WEI**

This note is continuation of our study [4]. We have proved in [4] that any subalgebra of a BCK/BCI-algebra X can be realized as a level subalgebra of some fuzzy subalgebra of X.

In this note we prove a generalization of this result.

We review some definitions and results. We refer the reader to [1], [4], [5] and [6] for details.

DEFINITION 1. Let X be a set. A fuzzy set in X is a mapping $\mu: X \to [0,1]$.

DEFINITION 2. Let X be a BCK/BCI-algebra. A fuzzy set μ in X is called a fuzzy subalgebra of X if, for all $x, y \in X$,

$$\mu(x * y) \ge \min(\mu(x), \mu(y)).$$

DEFINITION 3. Let μ be a fuzzy set in a set X. For $t \in [0, 1]$, the set

$$\mu_t := \{x \in X : \mu(x) \ge t\}$$

is called a level subset of μ .

THEOREM 4. [4] Let X be a BCK/BCI-algebra and let μ be a fuzzy set in X such that μ_t is a subalgebra of X for all $t \in [0, 1]$, $t \leq \mu(0)$. Then μ is a fuzzy subalgebra of X.

DEFINITION 5. [4] Let X be a BCK/BCI-algebra and let μ be a fuzzy subalgebra of X. The subalgebras μ_t , $t \in [0, 1]$ and $t \leq \mu(0)$, are called level subalgebras of μ .

THEOREM 6. [4] Any subalgebra of a BCK/BCI-algebra X can be realized as a level subalgebra of some fuzzy subalgebra of X.

As a generalization of Theorem 6, we prove the following theorem.

Received June 5, 1992.

THEOREM 7. Let X be a BCK/BCI-algebra. Then given any chain of subalgebras

 $A_0 \subset A_1 \subset \cdots \subset A_r = X,$

there exists a fuzzy subalgebra of X whose level subalgebras are exactly the subalgebras of this chain.

Proof. Consider a set of numbers

 $t_0 > t_1 > \dots > t_r,$

where each t_i is in [0,1]. Let $\mu: X \to [0,1]$ be a fuzzy set defined by

$$\mu(A_0) = t_0$$
 and $\mu(A_i - A_{i-1}) = t_i, 0 < i \le r.$

We claim that μ is a fuzzy subalgebra of X. Let $x, y \in X$. Then we distinguish two cases as follows:

Case 1. $x, y \in A_i - A_{i-1}$. Then by definition of μ ,

$$\mu(x) = t_i = \mu(y).$$

Since A_i is a subalgebra, it follows that $x * y \in A_i$, and so either $x * y \in A_i - A_{i-1}$ or $x * y \in A_{i-1}$. In any case we conclude that

$$\mu(x*y) \geq t_1 = \min(\mu(x), \mu(y)).$$

Case 2. For i > j, $x \in A_i - A_{i-1}$ and $y \in A_j - A_{j-1}$. Then

 $\mu(x) = t_i, \mu(y) = t_j, \quad ext{ and } \quad x * y \in A_i$

because A, is a subalgebra and $A_1 \subset A_1$. It follows that

$$\mu(x * y) \ge t_* = \min(\mu(x), \mu(y)).$$

Hence we know that μ is a fuzzy subalgebra of X. From the definition of μ , it follows that

$$\mathrm{Im}(\mu) = \{t_0, t_1, ..., t_r\}.$$

Thus the level subalgebras of μ are given by the chain of subalgebras

$$\mu_{t_0} \subset \mu_{t_1} \subset \ldots \subset \mu_{t_r} = X.$$

Now $\mu_{t_0} = \{x \in X : \mu(x) \ge t_0\} = A_0$. Finally we prove that $\mu_{t_i} = A_i$ for $0 < i \le r$. Clearly $A_i \subseteq \mu_{t_i}$. If $x \in \mu_{t_i}$, then $\mu(x) \ge t_i$ which implies that $x \notin A_j$ for j > i. Hence $\mu(x) \in \{t_1, t_2, ..., t_i\}$, and so $x \in A_k$ for some $k \le i$. As $A_k \subseteq A_i$, it follows that $x \in A_i$. Therefore we obtain $\mu_{t_i} = A_i$ for $0 \le i \le r$. This completes the proof.

REMARK. In Theorem 7, we have shown the existence of a fuzzy subalgebra whose level subalgebras are the subalgebras of the given finite chain. However, from the proof of the theorem it is clear that such a fuzzy subalgebra cannot be unique. In fact, we have given an example in [4] of the fact that two distinct fuzzy subalgebras of a finite BCK/BCI-algebra may have the identical family of level subalgebras.

Further, we have shown in [4; Theorem 15] that for a finite BCK/BCI-algebra X, two fuzzy subalgebras with the identical family of level subalgebras are equal if and only if their image sets are equal.

In [4] we introduced an equivalence relation for the family \mathcal{F} of all fuzzy subalgebras of a finite BCK/BCI-algebra X given by

 $\mu \sim \nu$

if and only if the fuzzy subalgebras μ and ν have the identical family of level subalgebras. This equivalence partitions \mathcal{F} into equivalence classes. We have shown in [4; Theorem 17] that if X is a finite BCK/BCI-algebra then the number of distinct equivalence classes in \mathcal{F} is finite.

Now let A be a subalgebra of a finite BCK/BCI-algebra X. Let n(A) denote the number of chains of subalgebras of X, ending in X but not necessarily beginning with the trivial subalgebra $\{0\}$, in which A is a member. Then clearly n(A) is a nonzero positive integer. From the Theorem 7, we have the following corollary:

COROLLARY 8. If A is a subalgebra of a finite BCK/BCI-algebra X, then n(A) is equal to the number of equivalence classes of fuzzy subalgebras of X such that A is a level subalgebra of any member of the equivalence class.

References

- 1. P. S. Das, Fuzzy groups and level subgroups, J. Math. Anal. Appl. 84 (1981), 264-269.
- 2. K. Iséki, On BCI-algebras, Math Seminar Notes 8 (1980), 125-130.
- 3. K. Iséki and S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japon. 23 (1978), 1-26.
- 4. Y. B Jun and J. Meng, Characterization of fuzzy subalgebras by their level subalgebras, to appear in Selected papers on BCK and BCI-algebras (P. R. China).

Y. B. Jun, J. Meng and S. M. Wei

5. X. Ougen, Fuzzy BCK-algebra, Math. Japon. 36 (1991), 935-942.

6. A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl. 35 (1971), 512-517.

*Department of Mathematics Gyeongsang National University Chinju 660-701, Korea

**Department of Mathematics Northwest University Xian 710069, P. R. China

62