CHARACTERIZATIONS ON KL-PRODUCT BCI-ALGEBRAS

J. Meng*, S. M. Wei* and Y. B. Jun**

The first author of this note and X. L. Xin introduced the concept of KL-product BCI-algebras and gave some elementary properties ([4]). Now we continue to study these algebras. Let us recall some definitions and results, which are necessary for development of this paper.

An algebra $(X ; *, 0)$ of type $(2,0)$ is said to be a BCI-algebra if it satisfies the following conditions:
$\mathrm{BCI}-1(x * y) *(x * z) \leq z * y$,
BCI-2 $x *(x * y) \leq y$,
BCI-3 $x \leq x$,
BCI- $4 x \leq y$ and $y \leq x$ imply $x=y$,
BCI-5 $x \leq y$ if and only if $x * y=0$.
The following identitics hold for any BCI-algebra X :
(1) $x * 0=x$,
(2) $(x * y) * z=(x * z) * y$,
(3) $x *(x *(x * y))=x * y$,
(4) $0 *(x * y)=(0 * x) *(0 * y)$.

The above definition and properties can be found in [1] and [4].
Definition 1. ([4]) Suppose $(X ; *, 0)$ is a BCI -algebra. If there are a BCK-algcbra ($Y ; *_{1}, 0_{1}$) and a p-semisimple BCI -algebra ($Z ; *_{2}, 0_{2}$) such that $X \cong Y \times Z$, then $(X ; *, 0)$ is said to be a KL-product BCIalgebra.

Definition 2. ([3]) An element a of a BCI -algebra X is said to be an atom if, for all x in $X, x * a=0$ implics $x=a$. The set of all atoms of X is denoted by $L(X)$. For any atom $a, V(a)=\{x \in X: a \leq x\}$ is called a branch of X.

Obviously, $V(0)$ is the BCK-part of X and denoted by $B(X)$. For details of atoms and branchs we refer readers to [3].

DEFINITION 3. ([1]) A nonempty subset I of a BCl -algebra X is said to be an ideal if it satisfies:
(5) $0 \in I$,
(6) $x * y \in I$ and $y \in I$ imply $x \in I$.

Proposition 4. ([4]) For X a BCI-algebra, the following conditions are equivalent:
(7) X is of $K L$-product,
(8) $L(X)$ is an ideal of X,
(9) $x * a=y * a$ implies $x=y$ for any a in $L(X)$.

Next we give other characterizations of KL-product BCI -algebras.
Theorem 5. A BCl-algebra $(X, *, 0)$ is of $K L$-product if and only if, for any $x \in X$ and for any $b \in L(X)$, we have

$$
(10) x=(x * b) *(0 * b)
$$

Proof. (\Rightarrow) If b is an atom of X, then by [3](13),

$$
\begin{aligned}
& (x *((x * b) *(0 * b))) * b \\
& =(x * b) *((x * b) *(0 * b)) \\
& =0 * b
\end{aligned}
$$

It follows from (9) that

$$
x *((x * b) *(0 * b))=0
$$

On the other hand,

$$
\begin{aligned}
& ((x * b) *(0 * b)) * x \\
& =((x * x) * b) *(0 * b) \\
& =(0 * b) *(0 * b) \\
& =0
\end{aligned}
$$

Hence $x=(x * b) *(0 * b)$, i.e., (10) holds.
(\Leftarrow) Suppose $x=(x * b) *(0 * b)$ for any $x \in X$ and for any $b \in L(X)$. We now prove that $L(X)$ is an ideal of X. Assume that $x * b \in L(X)$ and $b \in L(X)$. Denoted $a=0 *(0 * x) \in L(X)$, we have $x * b \in V(a * b)$ by [3](16). Thus $x * b=a * b$, and so

$$
x=(x * b) *(0 * b)=(a * b) *(0 * b) \in L(X)
$$

This means that $L(X)$ is an ideal of X. This completes the proof.

Theorem 6. A BCI-algebra X is of $K L$-product if and only if, for any $x, y \in X$ and for any $a, b \in L(X)$,
(11) $(x * a) *(y * b)=(x * y) *(a * b)$.

Proof. Suppose X is of KL-product. Since

$$
\begin{aligned}
& (((x * y) *(a * b)) *((x * a) *(y * b))) * a \\
& =(((x * a) *((x * a) *(y * b))) * y) *(a * b) \\
& \leq((y * b) * y) *(a * b) \\
& =(0 * b) *(a * b) \\
& \leq 0 * a
\end{aligned}
$$

noticing that $0 * a \in L(X)$ we have

$$
(((x * y) *(a * b)) *((x * a) *(y * b))) * a=0 * a .
$$

It follows from (9) that
$(12)((x * y) *(a * b)) *((x * a) *(y * b))=0$.
Because

$$
\begin{aligned}
& (((x * a) *(y * b)) *((x * y) *(a * b))) *(a * b) \\
& =(((x *(a * b)) *((x * y) *(a * b))) *(y * b)) * a \\
& \leq((x *(x * y)) *(y * b)) * a \\
& \leq(y *(y * b)) * a \\
& \leq b * a \\
& =0 *(a * b), \quad \quad \text { [by }[3](11)]
\end{aligned}
$$

we obtain

$$
(((x * a) *(y * b)) *((x * y) *(a * b))) *(a * b)=0 *(a * b)
$$

Using (9) the following identity holds
(13) $((x * a) *(y * b)) *((x * y) *(a * b))=0$.

Combining (12) and (13) we obtain (11).
Conversely, suppose that (11) holds. If, for $a \in L(X)$, we have $x * a=y * a$, then

$$
x * y=(x * y) *(a * a)=(x * a) *(y * a)=0 .
$$

Likewise we have that $y * x=0$, and so $x=y$. This says that (9) holds. By Proposition 4, X is of KL-product. The proof is completed.

To be motivated by this theorem, we introduce a mapping as follows.

Definition 7. Suppose $(X, *, 0)$ is a BCl -algebra. The mapping $p: X \rightarrow X$ is defined by putting $p(x)=x * a$ for all $x \in X$, where $a=0 *(0 * x) \in L(X)$.

By the necessity of Theorem 6 we have
Theorem 8. If X is a $K L$-product BCI-algebra, then p is an endomorphism on X.

Open problem. Does the inverse of Theorem 8 hold?
Theorem 9. A BCI-algebra ($X, *, 0$) is of $K L$-product if and only if there exists an endomorphism f on X such that for any $a \in L(X)$, $\left.f\right|_{V(a)}$, the restriction of f to $V(a)$, is a bijection from $V(a)$ onto $B(X)$.

Proof. Suppose X is of KL-product. By Theorem 8, the mapping $p: X \rightarrow X$ is an endomorphism and $\operatorname{Im}(p)=B(X)$. Now it suffices to show that for any $a \in L(X),\left.p\right|_{V(a)}$ is a bijection. If $x, y \in V(a)$ with $x \neq y$, then $x * y \neq 0$ or $y * x \neq 0$. Since by (11)

$$
\begin{aligned}
\left.\left.p\right|_{V(a)}(x) * p\right|_{V(a)}(y) & =p(x) * p(y) \\
& =(x * a) *(y * a) \\
& =(x * y) *(a * a) \\
& =x * y
\end{aligned}
$$

it follows that $p(x) * p(y) \neq 0$ or $p(y) * p(x) \neq 0$. Hence $\left.p\right|_{V(a)}$ is an injection from $V(a)$ to $B(X)$.

By [3](16) we have $x *(0 * a) \in V(a)$ for any $x \in B(X)$, and so by Theorem 5 the following holds:

$$
\left.p\right|_{V(a)}(x *(0 * a))=(x *(0 * a)) * a=(x * a) *(0 * a)=x .
$$

This says that $\left.p\right|_{V(a)}$ is a surjection from $V(a)$ to $B(X)$. Hence it is a bijection from $V(a)$ onto $B(X)$.

Conversely, suppose that there is an endomorphism f on X such that for any $a \in L(X), f l_{V(a)}$ is a bijection from $V(a)$ to $B(X)$. It is easy to verify that for any $a \in L(X), f(a)=0$. Hence for any $x \in X$ and for any $b \in L(X)$,

$$
\begin{aligned}
& f((x * b) *(0 * b)) \\
& =(f(x) * f(b)) *(f(0) * f(b)) \\
& =(f(x) * 0) *(0 * 0) \\
& =f(x) .
\end{aligned}
$$

Since x and $(x * b) *(0 * b)$ are in the same branch, we obtain $x=$ $(x * b) *(0 * b)$. By Theorem 5, X is of KL-product. The proof is completed.

References

1. K. Iséki, On BCI-algebras, Math. Seminar Notes 8 (1980), 125-130.
2. J. Meng, $B C K$-algebras, Lecture notes for students (in China), Northwest University, China (1990).
3. J. Meng and X. L Xin, Characterizations of atoms in BCf-algebras, Math. Japonica 37 (1992), 359-361.
4. J. Meng and X. L. Xın, A problem in BCI-algebras, Submitted to Math. Japonica.
*Department of Mathematics
Northwest University
Xian 710069, P. R. China
**Department of Mathematics
Gyeongsang National University
Chinju 660-701, Korea
