Pusan Kyŏngnam Math. J 8(1992), No 1, pp. 49-53

CHARACTERIZATIONS ON KL-PRODUCT BCI-ALGEBRAS

J. MENG*, S. M. WEI* AND Y. B. JUN**

The first author of this note and X. L. Xin introduced the concept of KL-product BCI-algebras and gave some elementary properties ([4]). Now we continue to study these algebras. Let us recall some definitions and results, which are necessary for development of this paper.

An algebra (X; *, 0) of type (2, 0) is said to be a BCI-algebra if it satisfies the following conditions:

BCI-1 $(x * y) * (x * z) \le z * y$, BCI-2 $x * (x * y) \le y$, BCI-3 $x \le x$. BCI-4 $x \le y$ and $y \le x$ imply x = y, BCI-5 $x \le y$ if and only if x * y = 0. The following identities hold for any BCI-algebra X: (1) x * 0 = x, (2) (x * y) * z = (x * z) * y, (3) x * (x * (x * y)) = x * y, (4) 0 * (x * y) = (0 * x) * (0 * y). The above definition and properties can be found in [1] and [4].

DEFINITION 1. ([4]) Suppose (X; *, 0) is a BCI-algebra. If there are a BCK-algebra $(Y; *_1, 0_1)$ and a p-semisimple BCI-algebra $(Z; *_2, 0_2)$ such that $X \cong Y \times Z$, then (X; *, 0) is said to be a KL-product BCIalgebra.

DEFINITION 2. ([3]) An element a of a BCI-algebra X is said to be an atom if, for all x in X, x * a = 0 implies x = a. The set of all atoms of X is denoted by L(X). For any atom $a, V(a) = \{x \in X : a \le x\}$ is called a branch of X.

Obviously, V(0) is the BCK-part of X and denoted by B(X). For details of atoms and branchs we refer readers to [3].

Received May 28, 1992

DEFINITION 3. ([1]) A nonempty subset I of a BCI-algebra X is said to be an ideal if it satisfies:

 $(5) \ 0 \in I,$

(6) $x * y \in I$ and $y \in I$ imply $x \in I$.

PROPOSITION 4. ([4]) For X a BCI-algebra, the following conditions are equivalent:

- (7) X is of KL-product,
- (8) L(X) is an ideal of X,
- (9) x * a = y * a implies x = y for any a in L(X).

Next we give other characterizations of KL-product BCI-algebras.

THEOREM 5. A BCI-algebra (X, *, 0) is of KL-product if and only if, for any $x \in X$ and for any $b \in L(X)$, we have (10) = x - (x + b) + (0 + b)

(10)
$$x = (x * b) * (0 * b).$$

Proof. (\Rightarrow) If b is an atom of X, then by [3](13),

$$(x * ((x * b) * (0 * b))) * b$$

= (x * b) * ((x * b) * (0 * b))
= 0 * b.

It follows from (9) that

$$x * ((x * b) * (0 * b)) = 0.$$

On the other hand,

$$((x * b) * (0 * b)) * x$$

= ((x * x) * b) * (0 * b)
= (0 * b) * (0 * b)
= 0.

Hence x = (x * b) * (0 * b), i.e., (10) holds.

(\Leftarrow) Suppose x = (x * b) * (0 * b) for any $x \in X$ and for any $b \in L(X)$. We now prove that L(X) is an ideal of X. Assume that $x * b \in L(X)$ and $b \in L(X)$. Denoted $a = 0 * (0 * x) \in L(X)$, we have $x * b \in V(a * b)$ by [3](16). Thus x * b = a * b, and so

$$x = (x * b) * (0 * b) = (a * b) * (0 * b) \in L(X)$$

This means that L(X) is an ideal of X. This completes the proof.

THEOREM 6. A BCI-algebra X is of KL-product if and only if, for any $x, y \in X$ and for any $a, b \in L(X)$, (11) (x * a) * (y * b) = (x * y) * (a * b).

Proof. Suppose X is of KL-product. Since

$$(((x * y) * (a * b)) * ((x * a) * (y * b))) * a$$

= (((x * a) * ((x * a) * (y * b))) * y) * (a * b)
 \leq ((y * b) * y) * (a * b)
= (0 * b) * (a * b)
 \leq 0 * a,

noticing that $0 * a \in L(X)$ we have

$$(((x * y) * (a * b)) * ((x * a) * (y * b))) * a = 0 * a.$$

It follows from (9) that

(12) ((x * y) * (a * b)) * ((x * a) * (y * b)) = 0.Because

$$(((x * a) * (y * b)) * ((x * y) * (a * b))) * (a * b)$$

= (((x * (a * b)) * ((x * y) * (a * b))) * (a * b)) * a
$$\leq ((x * (x * y)) * (y * b)) * a$$

$$\leq (y * (y * b)) * a$$

$$\leq b * a$$

= 0 * (a * b), [by [3](11)]

we obtain

$$(((x * a) * (y * b)) * ((x * y) * (a * b))) * (a * b) = 0 * (a * b).$$

Using (9) the following identity holds

(13) ((x * a) * (y * b)) * ((x * y) * (a * b)) = 0.Combining (12) and (13) we obtain (11).

Conversely, suppose that (11) holds. If, for $a \in L(X)$, we have x * a = y * a, then

$$x * y = (x * y) * (a * a) = (x * a) * (y * a) = 0.$$

Likewise we have that y * x = 0, and so x = y. This says that (9) holds. By Proposition 4, X is of KL-product. The proof is completed.

To be motivated by this theorem, we introduce a mapping as follows.

DEFINITION 7. Suppose (X, *, 0) is a BCI-algebra. The mapping $p: X \to X$ is defined by putting p(x) = x * a for all $x \in X$, where $a = 0 * (0 * x) \in L(X)$.

By the necessity of Theorem 6 we have

THEOREM 8. If X is a KL-product BCI-algebra, then p is an endomorphism on X.

Open problem. Does the inverse of Theorem 8 hold?

THEOREM 9. A BCI-algebra (X, *, 0) is of KL-product if and only if there exists an endomorphism f on X such that for any $a \in L(X)$, $f|_{V(a)}$, the restriction of f to V(a), is a bijection from V(a) onto B(X).

Proof. Suppose X is of KL-product. By Theorem 8, the mapping $p: X \to X$ is an endomorphism and Im(p) = B(X). Now it suffices to show that for any $a \in L(X)$, $p|_{V(a)}$ is a bijection. If $x, y \in V(a)$ with $x \neq y$, then $x * y \neq 0$ or $y * x \neq 0$. Since by (11)

$$p|_{V(a)}(x) * p|_{V(a)}(y) = p(x) * p(y)$$

= (x * a) * (y * a)
= (x * y) * (a * a)
= x * y,

it follows that $p(x) * p(y) \neq 0$ or $p(y) * p(x) \neq 0$. Hence $p|_{V(a)}$ is an injection from V(a) to B(X).

By [3](16) we have $x * (0 * a) \in V(a)$ for any $x \in B(X)$, and so by Theorem 5 the following holds:

 $p|_{V(a)}(x*(0*a)) = (x*(0*a))*a = (x*a)*(0*a) = x.$

This says that $p|_{V(a)}$ is a surjection from V(a) to B(X). Hence it is a bijection from V(a) onto B(X).

Conversely, suppose that there is an endomorphism f on X such that for any $a \in L(X)$, $f|_{V(a)}$ is a bijection from V(a) to B(X). It is easy to verify that for any $a \in L(X)$, f(a) = 0. Hence for any $x \in X$ and for any $b \in L(X)$,

$$f((x * b) * (0 * b))$$

= (f(x) * f(b)) * (f(0) * f(b))
= (f(x) * 0) * (0 * 0)
= f(x).

 $\mathbf{52}$

Since x and (x * b) * (0 * b) are in the same branch, we obtain x = (x * b) * (0 * b). By Theorem 5, X is of KL-product. The proof is completed.

References

- 1. K. Iséki, On BCI-algebras, Math. Seminar Notes 8 (1980), 125-130.
- 2. J. Meng, BCK-algebras, Lecture notes for students (in China), Northwest University, China (1990).
- 3. J. Meng and X. L. Xin, Characterizations of atoms in BCI-algebras, Math. Japonica 37 (1992), 359-361.
- 4. J. Meng and X. L. Xin, A problem in BCI-algebras, Submitted to Math. Japonica.

*Department of Mathematics Northwest University Xian_710069, P. R. China

**Department of Mathematics Gyeongsang National University Chinju 660-701, Korca