Pusan Kyongnam Math. J 8(1992), No 1, pp. 41-47

AN EQUIVALENT CONDITION FOR MEMBERSHIP IN NEW CLASSES $A_{m,n}^{l}$

HAN SOO KIM AND HAE GYU KIM

1. Introduction

Let \mathcal{H} be a separable, infinite dimensional, complex Hilbert spaces and let $\mathcal{L}(\mathcal{H})$ denote the algebra of all bounded linear operators on \mathcal{H} . A dual algebra is a subalgebra of $\mathcal{L}(\mathcal{H})$ that contains the identity operator $1_{\mathcal{H}}$ and is closed in the ultraweak operator topology on $\mathcal{L}(\mathcal{H})$. For $T \in \mathcal{L}(\mathcal{H})$, let \mathcal{A}_T denote the smallest subalgebra of $\mathcal{L}(\mathcal{H})$ that cointains T and $1_{\mathcal{H}}$ and is closed in the ultraweak operator topology. Moreover, let $Q_{\mathcal{A}_T}$ denote the quotient space $\mathcal{C}_1(\mathcal{H})/\perp_{\mathcal{A}_T}$, where $\mathcal{C}_1(\mathcal{H})$ is the trace class ideal in $\mathcal{L}(\mathcal{H})$ under the trace norm, and $\perp_{\mathcal{A}_T}$ denotes the preannihilator of \mathcal{A}_T in $\mathcal{C}_1(\mathcal{H})$. For a brief notation, we shall denote $Q_{\mathcal{A}_T}$ by Q_T . One knows that \mathcal{A}_T is the dual space of Q_T and that the duality is given by

(1)
$$\langle A, [L] \rangle = tr(AL), \quad A \in \mathcal{A}_T, [L] \in Q_T.$$

The Banach space Q_T is called a predual of \mathcal{A}_T . For x and y in \mathcal{H} , we can write $x \otimes y$ for the rank one operator in $\mathcal{C}_1(\mathcal{H})$ defined by

(2)
$$(x \otimes y)(u) = (u, y)x$$
 for all $u \in \mathcal{H}$.

The theory of dual algebras is applied to the study of invariant subspaces, dilation theory, and reflexivity. The classes $\mathcal{A}_{m,n}$ (to be defined in section 2) were defined by Bercovici-Foias-Pearcy in [2]. Also these classes are closely related to the study of the theory of dual algebras. C. Apostol, H. Bercovici, C. Foias and C. Pearcy [1] studied geometric criteria for membership in the class $\mathcal{A}_{\aleph_0} = \mathcal{A}_{\aleph_0,\aleph_0}$ (to be defined in section 2) S. Brown, B. Chevreau, G. Exner and C. Pearcy [5], [7],

Received May 18, 1992

Supported by the Basic Science Reserch Institute Program, Ministry of Education, 1992..

[8] obtained topological criteria and geometric criteria for membership in the class A_{\aleph_0} or A_{1,\aleph_0} . In this paper we construct new classes and obtain an equivalent condition for membership in the new classes.

2. Notation and preliminaries

The notation and terminology employed herein agree with those in [3], [4], [11]. We shall denote by D the open unit disc in the complex plane C, and we write \mathbf{T} for the boundary of D. The space $L^p = L^p(\mathbf{T}), 1 \leq p \leq \infty$, is the usual Lebesgue function space relative to normalized Lebesgue measure m on \mathbf{T} . The space $H^p = H^p(\mathbf{T}), 1 \leq p \leq \infty$, is the usual Hardy space. It is well-known that the space H^{∞} is the dual space of L^1/H_0^1 , where

(3)
$$H_0^1 = \{ f \in L^1 : \int_0^{2\pi} f(e^{it}) e^{int} dt = 0, \text{ for } n = 0, 1, 2, \cdots \}$$

and the duality is given by the pairing

(4)
$$\langle f, [g] \rangle = \int_T fg \ dm \quad \text{for} \quad f \in H^\infty, [g] \in L^1/H_0^1.$$

Recall that any contraction T can be written as a direct sum $T = T_1 \oplus T_2$, where T_1 is a completely nonunitary contraction and T_2 is a unitary operator. If T_2 is absolutely continuous or acts on the space (0), T will be called an *absolutely continuous contraction*. The following Foias-Sz. Nagy functional calculus [3, Theorem 4.1] provides a good relationship between the function space H^{∞} and a dual algebra \mathcal{A}_T .

THEOREM 2.1. ([3. Theorem 4.1]) Let T be an absolutely continuous contraction in $\mathcal{L}(\mathcal{H})$. Then there is an algebra homomorphism $\Phi_T: H^{\infty} \to \mathcal{A}_T$ defined by $\Phi_T(f) = f(T)$ such that

(a) $\Phi_T(1) = 1_{\mathcal{H}}, \quad \Phi_T(\xi) = T,$

(b)
$$\|\Phi_T(f)\| \le \|f\|_{\infty}, \quad f \in H^{\infty},$$

(c) Φ_T is continuous if both H^{∞} and \mathcal{A}_T are given their weak^{*} topologies,

(d) the range of Φ_T is weak^{*} dense in \mathcal{A}_T ,

(e) there exists a bounded, linear, one-to-one map $\phi_T: Q_T \to L^1/H_0^1$ such that $\phi_T^* = \Phi_T$, and

(f) if Φ_T is an isometry, then Φ_T is a weak^{*} homeomorphism of H^{∞} onto \mathcal{A}_T and ϕ_T is an isometry of Q_T onto L^1/H_0^1 .

42

DEFINITION 2.2. ([9]) Let $\mathcal{A} \subset \mathcal{L}(\mathcal{H})$ be a dual algebra and let mand n be any cardinal numbers such that $1 \leq m, n \leq \aleph_0$. A dual algebra \mathcal{A} will be said to have property $(\mathbf{A}_{m,n})$ if every $m \times n$ system of simultaneous equations of the form

(5)
$$[x_i \otimes y_j] = [L_{ij}], \quad 0 \le i < m, 0 \le j < n,$$

where $\{[L_{ij}]\}_{\substack{0 \le i < m \\ 0 \le j < n}}$ is an arbitrary $m \times n$ array from Q_A , has a solution $\{x_i\}_{0 \le i < m}, \{y_j\}_{0 \le j < n}$ consisting of a pair of sequences of vectors from \mathcal{H} .

For brief notation, we shall denote $(\mathbf{A}_{n,n})$ by (\mathbf{A}_n) . We denote by $\mathbf{A} = \mathbf{A}(\mathcal{H})$ the class of all absolutely continuous contractions T in $\mathcal{L}(\mathcal{H})$ for which the Foias-Sz.Nagy functional calculus $\Phi_T: \mathcal{H}^{\infty} \to \mathcal{A}_T$ is an isometry. Furthermore, if m and n are cardinal numbers such that $1 \leq m, n \leq \aleph_0$, we denote by $\mathbf{A}_{m,n} = \mathbf{A}_{m,n}(\mathcal{H})$ the set of all T in $\mathbf{A}(\mathcal{H})$ such that the singly generated dual algebra \mathcal{A}_T has property $(\mathbf{A}_{m,n})$.

To establish our results, it will be convenient to use the minimal coisometric extension theorem [11]: every contraction T in $\mathcal{L}(\mathcal{H})$ has a minimal coisometric extension $B = B_T$ that is unique up to unitary equivalence.

Given such T and B, one knows that there exists a canonical decomposition of the isometry B^* as

$$B^* = S \oplus R^*$$

corresponding to a decomposition of the space

(7)
$$\mathcal{K} = \mathcal{S} \oplus \mathcal{R},$$

where, if $S \neq (0)$, S is a unilateral shift operator of some multiplicity in $\mathcal{L}(S)$, and, if $\mathcal{R} \neq (0)$, R is a unitary operator in $\mathcal{L}(\mathcal{R})$. Of course, either S or \mathcal{R} may be (0). ([5])

Let P_{λ} be the Poisson kernel function

(8)
$$P_{\lambda}(e^{it}) = (1 - |\lambda|^2)|1 - \bar{\lambda}e^{it}|^{-2}, e^{it} \in \mathbf{T},$$

in L^1 , for each $\lambda \in D$. Then it follows from [3,p34] that

(9)
$$\langle f, [P_{\lambda}] \rangle = \tilde{f}(\lambda), \quad f \in H^{\infty},$$

where \tilde{f} is the analytic extension of f to D. For a given contraction $T \in \mathbf{A}(\mathcal{H})$, let us denote $\phi_T^{-1}([P_{\lambda}]) = [C_{\lambda}]$. Then we have

(10)
$$\langle f(T), [C_{\lambda}] \rangle = \tilde{f}(\lambda), \quad f \in H^{\infty}.$$

LEMMA 2.3. ([5, Lemma 3.5]) Suppose $T \in A(\mathcal{H})$ and has minimal coisometric extension B in $\mathcal{L}(\mathcal{K})$. Then $B \in A(\mathcal{K}), \Phi_T \circ \Phi_B^{-1}$ is an isometry and weak^{*} homeomorphism from \mathcal{A}_B onto \mathcal{A}_T , and $j = \varphi_B^{-1} \circ \varphi_T$ is a linear isometry of Q_T onto Q_B . Moreover,

(11)
$$j([C_{\lambda}]_T) = [C_{\lambda}]_B, \quad \lambda \in D$$

and

(12)
$$j([x \otimes y]_T) = [x \otimes y]_B, \quad x, y \in \mathcal{H}.$$

LEMMA 2.4. ([5, Lemma 3.6]) If T belongs to $A(\mathcal{H})$ and has minimal coisometric extension B in $\mathcal{L}(\mathcal{K})$, $x, y \in \mathcal{H}$, and $w, z \in \mathcal{K}$, then

(13)
$$||[x \otimes y]_T|| = ||[x \otimes y]_B||,$$

(14)
$$[x \otimes z]_B = [x \otimes Pz]_B,$$

and

(15)
$$[w \otimes z]_B = [Qw \otimes Qz]_B + [Aw \otimes Az]_B.$$

LEMMA 2.5. ([5, Proposition 4.5]) Suppose $T \in \mathbf{A}(\mathcal{H})$ and has minimal coisometric extension B in $\mathcal{L}(S \oplus \mathcal{R})$ and suppose that for every [L] in Q_T there exists a Cauchy sequence $\{x_n\}$ in \mathcal{H} and sequences $\{w_n\}$ in S and $\{b_n\}$ in \mathcal{R} such that $\{w_n + b_n\}$ is bounded and $\|(\varphi_B^{-1} \circ \varphi_T)([L]_T) - [x_n \otimes (w_n + b_n)]_B\| \to 0$. Then $T \in \mathbf{A}_1$.

We shall employ the notation $C_{.0} = C_{.0}(\mathcal{H})$ for the class of all (completely nonunitary) contractions T in $\mathcal{L}(\mathcal{H})$ such that the sequences $\{T^*\}^n$ converges to zero in the strong operator topology and is denoted by, as usual, $C_{0.} = (C_{.0})^*$, and N is denoted by the set of all natural numbers. LEMMA 2.6. ([6, Theorem 2.1]) Suppose $\{T_k\}_{k=1}^{\infty}$ is any sequence of operators contained in the class $A_{\aleph_0} \cap C_0$, $\{[L_k]_{T_k}\}_{k=1}^{\infty}$ is an arbitrary sequence (where $[L_k]_{T_k} \in Q_{T_k}$), and $\{\epsilon_k\}_{k=1}^{\infty}$ is any sequence of positive numbers. Then there exists a dense set $\mathcal{D} \subset \mathcal{H}$ such that for every x in \mathcal{D} , there exists a sequence $\{y_k^x\}_{k=1}^{\infty} \subset \mathcal{H}$ satisfying

(16)
$$[x \otimes y_k^x]_{T_k} = [L_k]_{T_k}, \quad k \in \mathbf{N},$$

and

(17)
$$||y_k^x|| > \epsilon_k, \quad k \in \mathbf{N}.$$

3. Classes $\mathcal{A}_{m,n}^{l}(\mathcal{H})$ and an equivalent condition for membership in $\mathcal{A}_{m,n}^{l}(\mathcal{H})$

From the idea of lemma 2.6, we construct new classes as following :

DEFINITION 3.1. Let m, n and l be any cardinal numbers such that $1 \leq m, n, l \leq \aleph_0$. We denote by $\mathbf{A}_{m,n}^l(\mathcal{H})$ the class of all $\{T_k\}_{k=1}^l$ in $\mathbf{A}(\mathcal{H})$ such that every $m \times n \times l$ system of simultaneous equations of the form

(18)
$$[x_{i} \otimes y_{j}^{(k)}]_{T_{k}} = [L_{ij}^{(k)}]_{T_{k}},$$

where $\{[L_{ij}^{(k)}]_{T_k}\}_{\substack{0 \le i < m \\ 0 \le j < n}}$ is an arbitrary $m \times n$ array from Q_{T_k} for each $1 \le k \le l$, has a solution $\{x_i\}_{0 \le i < m}, \{y_j^{(k)}\}_{\substack{0 \le j < n \\ 1 \le k \le l}}$ consisting of a pair of sequences of vectors from \mathcal{H} .

REMARK 3.2. If $\{T_k\}_{k=1}^{\infty}$ are in the class $\mathbf{A}_{\aleph_0} \cap C_0$, then $\{T_k\}_{k=1}^{\infty} \in \mathbf{A}_{1,1}^{\aleph_0}$, by lemma 2.6.

We are now ready to prove our main theorem.

THEOREM 3.3. Suppose m, n and l are cardinal numbers such that $1 \leq m, n, l \leq \aleph_0$ and $T_k \in \mathbf{A}(\mathcal{H})$ has minimal coisometric extension B_k in $\mathcal{L}(\mathcal{S}_k \oplus \mathcal{R}_k)$ for $k, \quad 1 \leq k \leq l$. Then $\{T_k\}_{k=1}^l \in \mathbf{A}_{m,n}^l$ if and only if for $\{[L_{ij}^{(k)}]_{T_k}\}_{\substack{0 \leq i < m \\ 0 \leq j < n}} \subset Q_{T_k}$ for $k, \quad 1 \leq k \leq l$, there exists a Cauchy

sequence $\{x_{i,p}\}_{p=1}^{\infty}$ in \mathcal{H} and sequences $\{w_{j,p}^{(k)}\}_{p=1}^{\infty}$ in \mathcal{S}_k and $\{b_{j,p}^{(k)}\}_{p=1}^{\infty}$ in \mathcal{R}_k such that $\{w_{j,p}^{(k)} + b_{j,p}^{(k)}\}$ is bounded and $\|(\varphi_{B_k}^{-1} \circ \varphi_{T_k})([L_{ij}^{(k)}]_{T_k}) - [x_{i,p} \otimes (w_{j,p}^{(k)} + b_{j,p}^{(k)})]_{B_k}\| \to 0.$

Proof. The idea of this proof comes from Lemma 2.5. Suppose $\{T_k\}_{k=1}^l \in \mathbf{A}_{m,n}^l(\mathcal{H})$. It follows from the definition of $\mathbf{A}_{m,n}^l(\mathcal{H})$ that, for $\{[L_{ij}^{(k)}]_{T_k}\}_{\substack{0 \leq i < m \\ 0 \leq j < n}}^{0 \leq i < m}$ in Q_{T_k} for k, $1 \leq k \leq l$, there exist $x_i, y_j^{(k)} \in \mathcal{H}, 0 \leq i < m, 0 \leq j < n, 1 \leq k \leq l$ such that $[L_{ij}^{(k)}]_{T_k} = [x_i \otimes y_j^{(k)}]_{T_k}$. Set $x_{i,p} = x_i, y_{j,p}^{(k)} = y_j^{(k)} = w_j^{(k)} + b_j^{(k)} \in \mathcal{S}_k \oplus \mathcal{R}_k$ for any $p \in \mathbb{N}$. Then it is obvious that these are required sequences. Conversely, let us $v_{j,p}^{(k)} = \mathbf{P}(w_{j,p}^{(k)} + b_{j,p}^{(k)}), p \in \mathbb{N}$, where P is an or-

Conversely, let us $v_{j,p}^{(k)} = \mathbf{P}(w_{j,p}^{(k)} + b_{j,p}^{(k)}), p \in \mathbf{N}$, where **P** is an orthogonal projection from \mathcal{K} onto \mathcal{H} . Since $\{v_{j,p}^{(k)}\}_{p=1}^{\infty}$ is bounded, we may suppose w.l.o.g, that $\{v_{j,p}^{(k)}\}_{p=1}^{\infty}$ converges weakly to v_j^k . Moreover, since $\{x_{i,p}\}_{p=1}^{\infty}$ is a Cauchy sequence, we have $\{x_{i,p}\}$ converges strongly to x_i .

$$\begin{split} \| [x_i \otimes v_{j,k}^{(k)}]_{T_k} - [x_{i,p} \otimes v_{j,p}^{(k)}]_{T_k} \| \\ &= \| [(x_i - x_{i,p}) \otimes v_{j,p}^{(k)}]_{T_k} \| \\ &\leq \| x_i - x_{i,p} \| \cdot \| v_{j,p}^{(k)} \| \to 0. \end{split}$$

Also from (12) and (14), with $j_k = \varphi_{B_k}^{-1} \circ \varphi_{T_k}$, we have

$$\begin{split} \| [L_{ij}^{(k)}]_{T_k} &- [x_{i,p} \otimes v_{j,p}^{(k)}]_{T_k} \| \\ &= \| \varphi_{B_k}^{-1} \circ \varphi_{T_k} ([L_{ij}^{(k)}]_{T_k}) - [x_{i,p} \otimes v_{j,p}^{(k)}]_{B_k} \| \\ &= \| \varphi_{B_k}^{-1} \circ \varphi_{T_k} ([L_{ij}^{(k)}]_{T_k}) - [x_{i,p} \otimes (w_{j,p}^{(k)} + b_{j,p}^{(k)})]_{B_k} \| \to 0 \end{split}$$

Then

$$\begin{split} \| [L_{ij}^{(k)}]_{T_k} &- [x_i \otimes v_{j,p}^{(k)}]_{T_k} \| \\ &\leq \| [L_{ij}^{(k)}]_{T_k} - [x_{i,p} \otimes v_{j,p}^{(k)}]_{T_k} \| + \| [x_{i,p} \otimes v_{j,p}^{(k)}]_{T_k} - [x_i \otimes v_{j,p}^{(k)}]_{T_k} \| \to 0. \end{split}$$

So

$$\|[L_{i_j}^{(k)}]_{T_k} - [x_i \otimes v_{j,p}^{(k)}]_{T_k}\| \to 0$$

An equivalent condition for membership in new classes $\mathbf{A}_{m,n}^{l}$

We now compute to show that $[L_{ij}^{(k)}]_{T_k} = [x_i \otimes v_j^{(k)}]_{T_k}$, and thus complete the proof; for $h \in \mathbf{H}^{\infty}(\mathbf{T})$, we have

$$\langle h(T_k), [L_{ij}^{(k)}]_{T_k} \rangle = \lim_p \langle h(T_k), [x_i \otimes v_{j,p}^{(k)}]_{T_k} \rangle = \lim_p (h(T_k)x_i, v_{j,p}^{(k)})$$

= $(h(T_k)x_i, v_j^{(k)}) = \langle h(T_k), [x_i \otimes v_j^{(k)}]_{T_k} \rangle.$

Hence we have $[L_{ij}^{(k)}]_{T_k} = [x_i \otimes v_j^{(k)}]_{T_k}, \quad 0 \le i < m, 0 \le j < n, 1 \le k \le l.$

Therefore the proof is complete.

References

- C Apostol, H Bercovici, C Foias and C. Pearcy, Invariant subspaces, dilation theory, and structure of the predual of a dual algebra. I, Funct Anal. 63 (1985), 369-404
- H. Bercovici, B.Chevreau, C. Foias and C. Pearcy, Dilation theory and systems of simultaneous equations in the predual of an operator algebra. I, Michigan Math. J. 30 (1983), 335-354.
- 3. H. Bercovici, B Chevreau, C. Foias and C. Pearcy, Dual algebras with applications to invariant subspaces and dilation theory, C.B.M.S. Regional Conference Series, No. 56, A.M.S., Providence, R. L., 1985.
- 4. A. Brown and C. Pearcy, Introduction to operator theory. I, Elements of functional analysis, Springer-Verlag, New York, 1977
- 5. B. Chevreau and C. Pearcy, On the structure of contraction operators I, J. Funct. Anal. 76 (1988), 1-29.
- 6 B. Chevreau and C. Pearcy, On common noncyclic vectors for families of operators, Houston J. Math 17 (1991), 637-650
- B. Chevreau, G. Exner and C. Pearcy, On the structure of contraction operators.III, Michigan Math. J 36 (1989)), 29-62.
- 8. G. Exner and P. Sullivan, Normal operators and the classes A_n , J. Operator Theory 19 (1988), 81-94
- 9. I. Jung, Dual operator algebras and the classes $A_{m,n}$. I, J Operator Theory, (to appear).
- I. B. Jung and C. Y. Park, A note on operators in the classes A_{m,n}, Kyungpook Math. J 28 (1988), 173-176.
- 11. B. Sz-Nagy and C. Foias, Harmonic analysis of operators on Hilbert spaces, North Holland Akademiai Kiado, Amsterdam/Budapest, 1970.

Department of Mathematics Kyungpook National University Taegu 702–701, Korea