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MAXIMAL SPACELIKE HYPERSURFACES 
IN A LORENTZIAN MANIFOLD 

WITH A CONSTANT CURVATURE

Seong—Kowan Hong

1. Introduction
A maximal spacelike hypersurface in a Lorentzian manifold is a 

counterpart of a minimal hypersurface in a Riemannian manifold. Our 
main purpose here is to study the Bernstein type problem proposed by 
E. Calabi [3].

In section 2, we study maximal spacelike hypersurfaces in i3 ob­
tained by revolving spacelike curves about an axis.

In section 3, we give local formulas needed in section 4.
S. Y. Cheng and S. T. Yau proved in [4] that the only maximal space­

like hypersurface which is a closed subset of the Lorentz-Minkowski 
space is a linear hyperplane. Note that Lorentz-Minkowski space is 
flat, and all maximal space-like hypersurfaces are totally geodesic. In. 
section 4, we study the Bernstein-type problems proposed by E. Calabi 
[3] in Lorentzian manifolds with constant curvatures.

2. Rotatory maxiaml spacelike surfaces in L3
Let us consider a transformation of Z3 which preserves the Lorentz 

metric, time- and space-orientations. We will call such a transforma­
tion a proper rotation in L3. By a rotatory maximal spacelike surface 
in 乙정 we mean a maximal spacelike surface obtained by properly rotat­
ing about an axis a regular spacelike curve lying in some plane containg 
the axis.

All rotatory maximal spacelike surfaces are characterized by the 
following theorem.
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THEOREM 1. Let M be a connected, nonplanar rotatory maximal 
spacelike surface. Then M must be parametrized in one of the following 
ways :

(1)

+疗/七一

sinh(cs + d) sinh(cs + d).s ----------------cos t.---------------- sm t

sin(cs + d) [ sin(cs + J) . _ 
--------------cosh f,---------------smh s

Here we use coordinates with respect to the designated frames.

To prove the theorem we need to solve differential equations which 
arise from the following lemmas.

LEMMA 1. Let M be a rotatoary spacelike surface in L2, with ro­
tation axis I.

(1) If I is spacelike, then M is represented by

coshf sinht o' 卩地）］ T°(5)COshf
(2) sinht cosht 0 0 = T°(s)sinhi

0 0 1 一叩）_

with respect to the basis {cq,61,62), where I = span {e?}, (x°(5), 0, 
g호(s)) is a regular spacelike curve with x°(s) + 0.

(2) If I is timelike, then M is represented by

'1 0 0 ' &- 2%)'
⑶ 0 cost —sin/ /〔S） = 숴(s)cost

0 sint cost 0 z'(s) sini

with respect to the basis (€0,61,62), where I = span (eo}? and (3尹(s), 
서(s), 0) is a regular spacelike curve with x1(5)丰 0.

(3) If I is lightlike, then M is represented by

1 0 0 ' a(s)「 ■ 相 -

(4) 1 一 t = —늘 q（S）+ b（s）
t 0 1 0 --
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with respect to the null frame basis {A, B, where I = span {B}, 
and (a(s)力(s),0) is a regular spacelike curve with a(5)丰 0.

Proof. Let M be generated by a curve z(s) which lies in a plane H 
containing I.

(1) Suppose Z is a spacelike axis. Choose an orthonormal frame 
(60,61,62) of L3 so that I = span {段}，Then all the proper rotations 
about I are represented by the matrix

cosht 
sinht 

0

sinht 
cosht 

0

0
0
1
,t £ R、

with respect to the frame.
Note that H is nondegenerate under the induced metric from L3, 

otherwise_JLf would be a degene호ate surface. Fu나xermore〉H cannot 
be spacelike. Suppose H was spacelike in L3 so that M could be 
represented by

cosh t sinh t o' ■ 0 ' z1(5)sinh/
sinht cosh t 0 z'(s) — x1(s) cosht

0 0 1 X2（5） 一成 s） 一

with 호espect to the basis {也心心}, where I = span 伉}, H = span 
{ei, ^2}? and (0,x1(5),t2(<s)) is a regular spacelike curve with 구，: 0. 
Then the first fundamental form of M would be

ds 허 — (工')2出 2,

which would imply M was Lorentzian surface in L3. Therefore H must 
be timeEke.

Now we may choose an orthonormal frame (eo,e1,e2} of L3 so that 
I =span(e2] and H =span(e0,e2). Then M is given by

coshZ 
sinht 

0

0 
0
1

sinh/ 
coshi 

0

p°(s)] x°（5）si 솨3
0 = w，(s) coshf

1：2（5）
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In this case the first fundamental form is given by

which assures that M is spacelike as long as x°(5)0 and the given 
curve (x°(s),0,x2(s)) is spacelike.

(2) Suppose I is timelike. Choose an orthonormal frame {勺)©®} 
of £저 so that I =span(e0). Then. all the proper rotations about I are 
represented by the matrix

-1 0 0
0 cos t 一 sin t , t 6 11,
0 sin t cos t

with respect to the frame.
Note that H must be timelike in this case because we can prove 

H is nondegenerate as we did in the proof of (1). A nondegenerate 
plain that contains timelike vectors must be timelike. Therefore we 
can choose an orthonormal frame (eo)e1,e2} of L3 so that I =span{e()) 
and H =span{eo©}. Then M is given by

"1 0 0 ' 丑。(s)- ■河)■
0 cos t —sin/ = X1(5)COS*
0 sint cosi 0 숴 (s) sint

In this case the first fundamental form is given by

which assures that M is timelike as long as 숴 (s) + 0 and the given 
curve (x°(5),xi(5),0) is spacelike.

(3) Finally suppose I is lightlike. Choose a null frame of
L3 so that I =span{B}. Then all the proper rotations about I are 
represented by the matrix

12 0 0
一늘 1 —t , t C R. 

t 0 1
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We claim that H is nondegenerate, and hence timelike.
Suppose H was degenerate. Then the profile curve x(5)could be 

represented by J(s)l7 + g(s)B for a unit spacelike vector in H such 
that U , B = 0)and the rotatioanary surface of z(s) about B could be 
represented by

■ 1 0
12

0 '
-t

■ 0 '
bf(s) + g(s) =

■ 0 ■
bf(s) + g(s) — tf(s)

t 0 1 一 M . 一 M .
for some b £ R. Then the first fundamental form of M would be given 
by (^)2ds2, which would imply M was degenrate. Hence H must be 
a nondegenerate plane containg a lightlike vector B, which means it is 
a timelike plain.

Since H is timelike, we may find a null frame so that
I =span{B}, H —span(A,B}^ and (a(s),b(s)50) is a spacelike curve 
with q(s)尹 0. Then M is given by

1 0 0 ' a(s)「 ■ a(s)-
-竺 1 -t 心 = —fa(s) + b(s)
t 0 1 0 .ta(s) 一

This surface has the metric 2 (*强으) ds1 + a흐dQ, which is positive 
inite as long as q(s)冃二 0 and

da . db f da . db \ da2 db2
•j-A + ~B - —A + —B ] = — + —
as as J \ as as ) as as

This completes the proof.

Let Af be a rotatory spacelike surface in L3 defined by (1). 
dx2 .

If -厂=0 at a point, then M cannot be a spacelike surface. Hence 
dx2,. .

we may assume —— is nowhere zero on some interval I so that the 
ds t

curve a(s) can be reparametrized by

Q'(s) = (c(s),0,s),
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where z(s) is nowhere zero on the interval I. The corresponding surface 
is given by

(x(s) cosh/, x(s) sinhf, s)

with respect to an orthonormal frame in L3. Since we want to make
M spacelike, we assume (帑) < 1. Then

. d^x
H 三 0 if and only if ~~r^x — as2

2
+ 1 = 0.

Let M be a rotatory spacelike surface in L3 defined by (2). Then M 
is given by

(5, X(5)cost, X(5)sin t), 

where x(s) is nowhere zero and (帑)？ > 1. Then

(PxH 三 0 if and only if —-r-x — 
dsz

2
+ 1= 0.

Let M be a rotatory spacelike surface in L3 defined by (3). Then 
M is given by

a(s),-y - a(s) + s, ta(s)),

with respect to a null frame {A, B, where a(s) is nowhere zero and 
> 0 everywhere. Then

t2
H 三 0 if and only if -r^a + 2 

dsl

2
=0.

To obtain all rotatory maxi ami spacelike surfaces in Z3, we need to 
solve the differential equations.

LEMMA 2. Let n(s) be a smooth function on I. Then
(1) The equation

cPx
潁f 一

2

+ 1 =0



Maximal spacehke hypersurfaces 31

has the solutions
( z(s) = 의虹土의, if X + 0, (帑)2 < 1, 
l，(s) = 의虫으土이, if "0, (g)2 > 1.

(2) The equation
缥+2(打=。

has the solutions
z(s) = (c26 + 疗/3 if :r(s) + 0,(芬)> 0-

Proof. Let p = 으Then the equations may be reduced to

I (笑)舛顼+ 1 = 0 

1" + 2宀。

or
(pdp dx
I p2 — 1 x

I虫=_2旺.

I p X
By integrating both sides we obtain the results easily.
Now the theorem follows immediately.

3. Local formulas
In the section we develop the geometry of space-like hypersurfaces 

of Lorentzian manifolds using the method of moving frames.
Let TV be an n + 1 dimensional Lorentzian manifold. Let eo, •■- , en 

be a local orthonormal frame field in N、and let u?o 5 be the dual
coframe. We shall use the summation convention with Roman indices 
in the range 1 < z, j, • • • < n and 0 < /?, — •< n. Then we have

and the Lorentzian metric takes the form
d소 = £*此, 

a
where ea = ±1 according to the signatures of e/s in N.
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PROPOSITION. There exist 1 forms 3邱,and 2 forms 们 called 
connection forms, and curvature forms, determined uniquely by the 
structure equations of N given by

(5) d(va = — E 邻3郷 A 3財 + = 0, 

(6)
7

Proof. Let D be the Levi-Civita connection defined on N. Define

3邱=〉：€y「為U牛

•vdiere

DjK。=，［為时
7

These 3时 are the unique 1-forms satisfying the structure equations.
The curvature 2-forms are then uniquely defined by the equation.

Let K be the Lorentzian curvature tensor on N、and let

We restrict these forms to M. Then

A(6-^, =〉: -Ka丿

a

Then

Qq/ = 5〉: &丫1\9护丫83、A 3$) and.
2 7,5

"a/3 初 +

⑺ 3° = 0.
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By using (5)-(7), we obtain

(8) du山=一 Aq, 3分 + 3〃 = 0,
3

(9) dujtj = —〉： 3疏 A 3k? + ©ij ,
k

where 0U denotes the curvature forms on M.
Let R be the curvature tensor of M given by

】구(以;，어)勺 —〉巳t •
i

Then
6匕7 = 5R巧k【3k A (V/.

亠k,l

The form II =and the scalar H = (幸)如 are 
called the second fundamental form and the mean curvature of M. 
Since 0 = 血。= —u?Ol A 3“ by Cartan's lemma, we can write

(10) ^0i =，：，妇jX?, htj — hjZ.
3

Using (6) and (9),we obtain the Gauss formula

h 11 hj k ) +

The first covariant derivative of II is defined by

(▽/，)(弓)勺)=〉:hqjkWk
k

=dhtj —〉: hgk3k} —〉： hjk3ki・ 
k k

Then, by exterior differentiating (10), we obtain the Coddazi equation

(12) 檢険—hikj =



34 Seong-Kowan Hong

Next define the second covariant derivative of II by

(▽ ： 
i

= 바fk —〉： —〉: }七谁3“ —〉: 歸泌〃

I I I

and exterior differentiate (10) to obtain the Ricci formula

(13) — hijik =〉: hlTnRmjj-i +〉:
m m

Let us now define the covariant derivative of K, as a curvature tensor 
of TV,by­

Thw res拍cting to M, we obtain

(14) = Koijkl — "j/Ko’ok — "jhK[)zjO +〉： h，mlKm亀jki
m

where Koijfci denote the components of the covariant derivative of 
〉我치 &)키*七3卩力 so that

】為泓3【=dKQtjk — ^2 — -
I m m m

The Laplacian AU of the second fundamental form II is defined by

=〉:hyjkk-

From (12), we obtain

(15) (△〃)(%)句) = )[{也赤仆 — I^Oijkk} = 이아块订k — I^Oijkk}•
Ar k

Also, from (13) we obtain

(16) hkijk = +〉[안나+ h，#mRmkjk)•
m
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Then if we replace hkikj in by hkkij ~K^ktk］ (by 12) and if we substitute 
the right hand side of (16) into hk访k of (15), we obtain.

(17)
(△〃)(©"％) =〉［{Kkkzj —I^Qktkj —I^-Oijkk } 

k
+〉:hkmRmjk +〉: &}•

k m m

From (11),(14) and (17) we then obtain 

(18)

+{如洗 Kg。+ /妇 jKojtok}
U-

+ 8仇"mkzk + ZhmkKmi}k + h mi Kmkjk}
myk

m,k
—hkmhmkhij — .

4. Maximal spacelike hypersurfaces in Lorentzian manifold 
with constant curvature

Now we assume that N has constant curvature c and that M is 
maximal in TV, so that £八「니上 = °・ Then

1〔1住1 = — 8七［8仆)

and

(19) Rqj =〉: Rikjk = C(?2 — 1 泌gj +hykhkj .
k

Then easily we know that ((n — l)c^7) < (RQ and the equality holds 
everywhere if and only if M is totally geodesic in N.
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Now we have the Gauss formula

(20) R讷I = c(8tk6ji - &泌丿Q - (htkhji - hiihjk)

and Codazzi equation 

(21) hqk — hjk) = 0

and the Ricci formula

(22) 丄任1 — htjik =〉: hmjRmiki +〉:

Note that 1＜邮如件 =0 and )k hkki3hl3 三 0. Hence

(23) (△〃)(&, 勺) = 日* + nchTJ +一 으%
k

and

(24) £ 如△H(e“ 勺)=(nc + S)S,

where S = £[ 3 htj2 is the length squared of the second fundamental 
form.

A formula for the Laplacian of S will be needed later. This was first 
derived by Calabi [이 in the case N = Ln+1. The wsks of Cheng and 
Yau [4] and Treibergs [13] are also relevant here. Nishikawa [10] has 
used similar computation when N is locally symmetric spacetime with 
nonnegative spacelike sectional curvature.

；△$= £(/以)2 + £%(△〃)(％,勺)

=5S(奴仆)2 + (nc + S)S

〉(nc + S)S.
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THEOREM 2. Let M be a complete maximal spacelike hypersurface 
in a Lorentzian (n+l)-dimensional manifold N with constant curvature 
c.

i) If c >0, then M is totally geodesic.
H) Ifc < 0, and the norm of the second fundamental form is constant, 

then either M is totally geodesic, or S = —cn.
We need the following theorem of [11] to prove the theorem.
THEOREM, (Omori-Yau) Let M be a complete Riemannian mani­

fold with Ricci curvature bounded from below. Let f be a C2-function 
which is bounded from below on M. Then for all e > 0 there exists a 
point x in M such that, at x,

11 grad/j| < e, A/ > -e, and < inf / + e.

Lemma 1. S = 0 or S < -cn.
Proof. Note that M satisfies the hypothesis of the Theorem by 

Omori-Yau. Let's use the maximum principle argument as in [14]. 
Put f = \ IJ S + a for any positive constant a. Then / is a bounded 
C°°-function on M. Now we have

f3
△顶=+ 3/5||gradS||2.

Let e be any positive number. Then there is a point x in M such that, 
at x,

^||gradS|| < e, A/ > —6, and /(x) V inf / + 6.

Therefore we obtain

< e(inf / + e) + 12c.

Since > ncS + S2, it follows 난lat

舞靜(f cS - $2) > 3土戸. (-Rs) 2 r(inf f + e) - 12e

When 6-^0, /(x) goes to the infimum and S(x) goes to the supremum. 
Thus we conclude that the function S is bounded on M, and that if 
S 0 then S < —nc.

For the proof of the next lemma, see [9].
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LEMMA 2. Suppose c < 0. If the norm \ II \ of the second funda­
mental form of M is constant^ and II does not vanish identically, then 
S = —nc.

Now we are ready to prove the Theorem. Suppose c > 0. For any 
x E Af, either S(z) = 0 or S(c) < —nc. Since S(z) > 0, S(x) = 0. 
Thus i) is proved.

Suppose c < 0, and S is constant. Then either S = 0 or S = —nc. 
Hence ii) is proved.
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