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MAXIMAL SPACELIKE HYPERSURFACES
IN A LORENTZIAN MANIFOLD
WITH A CONSTANT CURVATURE

SEONG-KowaN HoNG

1. Introduction

A maximal spacelike hypersurface in a Lorentzian manifold is a
counterpart of a minimal hypersurface in a Riemannian manifold. Our
main purpese here is to study the Bernstein type problem proposed by
E. Calabi [3].

In section 2, we study maximal spacelike hypersurfaces in L® ob-
tained by revolving spacelike curves about an axis.

In section 3, we give local formulas needed in section 4.

S.Y. Cheng and S. T. Yau proved in [4] that the only maximal space-
like hypersurface which is a closed subset of the Lorentz-Minkowski
space is a lincar hyperplane. Note that Lorentz-Minkowski space is
flat, and all maximal space-like hypersurfaces are totally geodesic. In
section 4, we study the Bernstein-type problems proposed by E. Calabi
[3] in Lorentzian manifolds with constant curvatures.

2. Rotatory maxiaml spacelike surfaces in L?

Let us consider a transformation of L? which preserves the Lorentz
metric, time- and space-orientations. We will call such a transforma-
tion a proper rotation in L. By a rotatory maximal spacelike surface
in I} we mean a maximal spacelike surface obtained by properly rotat-
ing about an axis a regular spacelike curve lying in some plane containg
the axis.

All rotatory maximal spacelike surfaces are characterized by the
following theorem.
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THEOREM 1. Let M be a connected, nonplanar rotatory maximal
spacelike surface. Then M must be parametrized in one of the following

ways :
(___‘_q_sm(cs +d) cosht, sincs +d) sinht, s)
c c
DR ( sinh(cs +d)  , sinles+d) t)
c c
2
((025 + d)3, —%—(c2s + )3 4 5,t(c?s + d)l/s) .

\

Here we use coordinates with respect to the designated frames.

To prove the theorem we need to solve differential equations which
anse from the following lemmas.

LEMMA 1. Let M be a rotatoary spacelike surface in L*, with ro-
tation axis .
(1) If l is spacelike, then M is represented by

cosht sinht 0 z%(s) z%(s)cosht
(2) sinht cosht 0 0 = | 2%(s)sinht
0 0 1 z2(s) z%(s)
with respect to the basis {eo,e1,e2}, where I = span {ez}, (z°(s), 0,

z%(s)) is a regular spacelike curve with z%(s) # 0.
(2) If | is timelike, then M is represented by

1 0 0 z%(s) z°(s)
(3) 0 cost —sint z(s) | = | z'(s)cost |,
0 sint cost 0 z'(s)sint
with respect to the basis {eg,e;,e2}, where [ = span {ep}, and (z°(s),

z1(s), 0) is a regular spacelike curve with z*(s) # 0.
(3) If 1 is Iightlike, then M is represented by

10 0 a(s) , als)
(4) -t (1} —t] |b(s) | = | ~La(s)+b(s) |,

t 1 0 ta(s)
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with respect to the null frame basis {4, B,C}, where | = span {B},
and (a(s),b(s),0) is a regular spacelike curve with a(s) # 0.

Proof. Let M be gencrated by a curve z(s) which lies in a plane H
containing .

(1) Suppose [ is a spacelike axis. Choose an orthonormal frame
{eg,e1,e2} of L? so that I = span {e;}. Then all the proper rotations
about ! are represented by the matrix

cosht sinht 0
sinht cosht 0{, t¢R,
0 0 1

with respect to the frame.
Note that H is nondegenerate under the induced metric from L3,
otherwise A would be a degenerate surface. Futhermore, H cannot

be spacelike. Suppose H was spacelike in L® so that M could be
represented by

cosht sinht 0 0 x!(s)sinht
sinht cosht O {z'(s)} = | &'(s)cosht |,
0 0 1| 1z%s) z%(s)

with respect to the basis {eg,e1,e2}, where | = span {e;}, H = span
{ei1,e2}, and (0,z'(s),2%(s)) is a regular spacelike curve with z!(s) # 0.
Then the first fundamental form of M would be

(GRCEER

which would imply M was Lorentzian surface in L®. Therefore H must
be timelike.

Now we may choose an orthonormal frame {eg,e;,e9} of L? so that
I =span{e,} and H =span{eg,e;}. Then M is given by

cosh? sinht 0 z%(s) z%(s)sinht
sinht cosht 0 0 = | 2%(s) cosht
0 0 1 z?(s) z2(s)
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In this case the first fundamental form is given by

dz®\? dr?\? 2 ONZ 1.2
(—(E) + (-le—> ds +(l‘ ) dt ’
which assures that M is spacelike as long as z°(s) # 0 and the given
curve (z%(s),0,2%(s)) is spacelike.
(2) Suppose [ is timelike. Choose an orthonormal frame {eg,e1,e2}

of L3 so that { =span{eg}. Then all the proper rotations about [ are
represented by the matrix

1 0 0
0 cost —sintj, tcR,
0 sint cost

with respect to the frame.

Note that H must be timelike in this case because we can prove
H is nondegenerate as we did in the proof of (1). A nondegenerate
plain that contains timelike vectors must be timelike. Therefore we
can choose an orthonormal frame {eg,e;,e2} of L?® so that [ =span{eg}
and H =span{eg,e;}. Then A is given by

1 0 6 z%(s) z%(s)
0 cost —smnt 2(s) | = | z'(s) cost
0 sint cost 0 z(s)sint

In this case the first fundamental form is given by

dz®\* dz'\’
_[az” ax” ds? 1)2 742
(-(5) +(F) ) verar
which assures that M is timelike as long as z'(s)} # 0 and the given
curve (2°(s),z!(s),0) is spacelike.
(3) Finally suppose ! is lightlike. Choose a null frame {4,B,C} of

L? so that I =span{B}. Then all the proper rotations about ! are
represented by the matrix
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We claim that H is nondegenerate, and hence timelike.
Suppose H was degenerate. Then the profile curve z(s} could be
represented by f(s)U + g(s)B for a unit spacelike vector in H such

that U - B = 0, and the rotatioanary surface of z(s) about B could be
represented by

¢ 1 f(s) f(s)

for some b € R. Then the first fundamental form of M would be given
by (g)zdsz, which would imply M was degenrate. Hence H must be
a nondegencrate planc containg a lightlike vector B, which means it is
a timelike plain.

Since H is timelike, we may find a null frame {4,B,C}, so that
! =span{B}, H =span{A,B}, and {(a(s),b(s),0} is a spacelike curve
with a(s) 3 0. Then M is given by

10 0 a(s) , a(s)
-5 1 -t b(s) | = —Sa(s)+b5(s) | -
t 0 1 0 ta(s)

This surface has the metric 2 (42 %) ds® + a2dt?, which is positive def-
inite as long as a(s) # 0 and

da db da db da®?  db>
(£A+2;B) . (£A+E;B) =t

£ 0.

100 0 0
[-‘7 {1) —t [bf(s)Jrg(S)}=[bf(3)+g(8)—tf(3)]

This completes the proof.

Let M be a rotatory spacelike surface in L? defined by (1).
dz? .
If o= 0 at a point, then A cannot be a spacelike surface. Hence
s
2
we may assume T;-:— 1s nowhere zcro on some interval I so that the

s
curve o(s) can be reparametrized by

a(s) = (2(s),0,5),
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where z(s) is nowhere zero on the interval I. The corresponding surface
is given by
(z(s) cosht,z(s)sinh ¢, s)

with respect to an orthonormal frame in L3. Since we want to make
. 2
M spacelike, we assume (%f—) < 1. Then

. .. d’zx dz\?
H =0 if and only if ds—zx—(zi;) +1=0.

Let M be a rotatory spacelike surface in L® defined by (2). Then M
is given by
(s,z(s) cost,z(s)sint),

where (s) is nowhere zero and (22)* > 1. Then

. .. d’z dz\?
H =0 if and only if 3-3—2:1:—(&) +1=0.

Let M be a rotatory spacelike surface in L® defined by (3). Then
M is given by

(a(s), —% —a(s) + s, ta(s)) ,

with respect to a null frame {A, B, C}, where a(s) is nowhere zero and
% > 0 everywhere. Then

P .. da da\”
H =0 if and only if Ea+2<gg) ={.

To obtain all rotatory maxiaml spacelike surfaces in L®, we need to
solve the differential equations.

LEMMA 2. Let z(s) be a smooth function on I. Then

(1) The equation
d*z dz\?
(&) +1=0
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has the solutions
{ z(s) = M, if z#£0, %)2 <1,
z(s) = w, if z#0, %)2 > 1.

(2) The equation
d*z dr\?
—_— 21 — =
dst +e (ds) 0
has the solutions

2
z(s) = (s + d)V/? if x(s) #0, (%) > 0.

Proof. Let p= % Then the equations may be reduced to

px—-p +1=90

R

/,J.n
Ld )px+"p =0

pdp _ dz

or

pt—1 =z
dp dz

c) b

P z
By integrating both sides we obtain the results easily.
Now the theorem follows immediately.

3. Local formulas

In the section we develop the geometry of space-like hypersurfaces
of Lorentzian manifolds using the method of moving frames.

Let N be an n + 1 dimensional Lorentzian manifold. Let eg,--- , €,
be a local orthonormal frame field in ¥V, and let wy, - - - ,wy, be the dual

coframe. We shall use the summation convention with Roman tndices
in the range 1 < ¢,3,--- <nand 0 € &, 8, -- < n. Then we have

waleg) = ba
and the Lorentzian metric takes the form

§ 2
= eawa,
[ 4

where €, = 11 according to the signatures of e,’s in N.
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PROPOSITION. There exist 1 forms wag, and 2 forms Qqg, called
connection forms, and curvature forms, determined uniquely by the
structure equations of N given by

(5) dwy = ~ Ze,gwaﬂ Awg, wag +wga =0,
B
(6) dwapg = — Z €1Way Awys + Qap-
¥

Proof. Let D be the Levi-Civita connecction defined on N. Define

waﬂ = Z 671-‘:30)7,
¥

where
Deaeﬁ = zrlﬂe-r-
v

These wyp are the unique 1-forms satisfying the structure equations.
The curvature 2-forms ,4 are then uniquely defined by the equation.
Let K be the Lorentzian curvature tensor on N, and let

K(e.,,eg)cp = Z Kag.,gea.
o

Then

1 -
Qop = 3 Z eI apyswy A ws, and

v,8
I\’a};.},a + Kopsy = 0.
We restrict these forms to A. Then

(7) wo = 0.
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By using (5)-(7), we obtain
(8) dw, = —Zw,,/\w,, wyy +w,, =0,
i

(9) dwl] = - Zw!k Awk} + e:]y
k

where ©,; denotes the curvature forms on M.
Let R be the curvature tensor of M given by

R(ek,c;)e] = z R‘)“c,.

1 Z
Y

The form I = Zt; hiww,, and the scalar H = (%) Yo by are
called the second fundamental form and the mean curvature of M.
Since 0 = dwy = — ), wo, A w,, by Cartan’s lemma, we can write

(10) Wy, = Zhejw]a hz} = h]t'
1

Using (6} and (9),we obtain the Gauss formula
R = —(hahji ~ hahyi) + Kogee

The first covariant derivative of ] is defined by

(VIDewe)) = hypon
k
=dhy— Y huwiy = ¥ hywrs.
k k

Then, by exterior differentiating (10}, we obtain the Coddazi equation

(12) hijk — hik; = Koggi-
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Next define the second covariant derivative of I7 by

(VZII)(en €5, ek) = Z h:;klwl

1
=dh, — Z hypwy — E hiwyy — Z hijw
I 1 1

and exterior differentiate (10) to obtain the Ricci formula
(13) higit = Bujie = Y hum Rngit + 3 Bym Renait.
m m

Let us now define the covariant derivative of K, as a curvature tensor
of N,by
(‘DK)(eu £y,€k, e‘) = Z I(Ukl,mwm-
m
Then restricting to M, we obtain
(14) KO:Jk;l = Koiﬂcl - thKOtOk - hkfI{O:JO + Z hle'mth'n
m

where Kjg,;x1 denote the components of the covariant derivative of
Ej.k.l Kojrw,wiwy so that

> Kojuwr = dKoiyi— Y Komykwmi— Y Koimkwm;— Y Koym@mk.
1 m m m
The Laplacian AT of the second fundamental form I is defined by
All{e, e} = zh‘f""'
k
From (12), we obtain
(15)  (AID)(ei,e;) = Y {hugk — Koijra} = Y _{bkijr — Kooy}
k k

Also, from (13) we obtain

(16) hkljk = hktk} + Z{hkam:Jk + hszmkgk}-
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Then if we replace hz.x; in by higsy — I ok, (by 12) and if we substitute
the right hand side of (16) into Ay, of {15), we obtain

(17)
(AII)(CH e}) = Z{hkkq - I{Ok!kj - I\’O;Jkk}

k
+ Z{thmRmek + Z himRmkjk}-
k m m

From (11),(14) and (17) we then obtain

(18)
AII(‘E;, e)) = Z{hkk;; + I{Oktk;j + ffo:;k,k}
k

+ Z{hkkajo + by Kogox }
e

+ Z{hm]h’mktk + 2hmk}-\,mz]k + hmahﬁmk)k}

m,k

- Z{hmthmjhkk + h&:mhm_;htk

m,k

- hkmhmkhq - hmzhmkhk)}'

4. Maximal spacelike hypersurfaces in Lorentzian manifold
with constant curvature

Now we assume that N has constant curvature ¢ and that M is
maximal in N, so that 3, hiz; = 0. Then

Kok = c(8x 650 — 6.46,1)

and

(19) RU = Z R:k}k = c(n - 1)513 + zhzkhh-
k

Then easily we know that {(n — 1)cé,;} < (R,,} and the equality holds
everywhere if and only if M is totally geodesic in N.
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Now we have the Gauss formula
(20) Rijkl = c (8,851 — 8ubyi) — (harhyr — hithyi)
and Codazzi equation
(21) Rk — hig; =0
and the Ricci formula

(22) hl]kl - hxﬂk = Z hmJRm:k! + Z hmemjkl«

Note that K,gs,, = 0 and Ez,).k hiki by, = 0. Hence

(23) (AII)(e,,C’,) = Z hi—gu 4 nchu + S‘h,‘j
k
and
(24) Y hyAll(e,e,) = (ne + S)S,
1,2

where S = Zw h,j2 is the length squared of the second fundamental

form.

A formula for the Laplacian of S will be needed later. This was first
derived by Calabi {3] in the case N = L**!. The works of Cheng and
Yau [4] and Treibergs {13] are also relevant here. Nishikawa [10] has
used similar computation when N is locally symmetric spacetime with

nonnegative spacelike sectional curvature.

385 = (el + S hs(AID e,

1,3,k

= Z (hyi)? + (nc+ S)S

1,3,k
> (nc+ 5)S.
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THEOREM 2. Let M be a complete maximal spacelike hypersurface

in a Lorentzian (n+1)-dimensional manifold N with constant curvature
c

i) ¢ >0, then M is totally geodesic.
ii} Ifc < 0, and the norm of the second fundamental form is constant,
then either M is totally geodesic, or § = —cn.

We need the following theorem of [11] to prove the theorem.

THEOREM. (Omori-Yau) Let M be a complete Riemannian mani-
fold with Ricci curvature bounded from below. Let f be a C*-function
which is bounded from below on M. Then for all € > 0 there exists a
point x in M such that, at z,

llgradfii <e, Af>-—e and f(z)<inff+e
LEMMA 1. S=0o0or § < —cn.

FProof. Note that M satisfies the hypothesis of the Theorem by
Omori-Yau. Let’s use the maximum principle argument as in [14].

Put f = 1/v/S5 + a for any positive constant ¢. Then f is a bounded

C>-function on M. Now we have
3
Af = —-2—AS+ 3f5[!grad5”2.
Let € be any positive number. Then there is a point z in M such that,
at z,
fe
—4—||grad5H <€, Af>-—¢ and f(z)<inff+e

Therefore we obtain
4
-Q—AS < e(inf f + €} + 12e.

Since %AS > neS + 52, it follows that

1 \ 1 1 ,

e (—neS -S> — == > — 1%
T ap (—necS - §*%) > S 1ap ( 2A..S’) > —¢(inf f + €) ~ 12¢
When € — 0, f(2) gocs to the infimum and S(z) goes to the supremum.
Thus we conclude that the function § is bounded on M, and that if

S £ 0 then § < ~nec.

For the proof of the next lemma, see [9].



38 Seong-Kowan Hong

LEMMA 2. Suppose ¢ < 0. If the norm | I1 | of the second funda-
mental form of M is constant, and II does not vanish identically, then
S = —nec.

Now we are ready to prove the Theorem. Suppose ¢ > 0. For any
r € M, either S(z) = 0 or S(z) < —nc. Since S(z) 2 0, S(z) = 0.
Thus 1) is proved.

Suppose ¢ < 0, and § is constant. Then either S =0 or § = —nec.
Hence i1} is proved.
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