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ON SLICES

WoN Hul

0. Introction

We will use the following notational conventions : a ”product space”
will always mean a product topological space equipped with the Ty-
chonoff product topology ; given a product space (H ser Xa (T,) i€ J) ,
p; will denote the projection of the product onto the factor X,.

In [7], Dugundji introduced the notion of slice as a line parallel to a

factor space through a point of a cartesian product space (See §2 for
precise definition).

The purpose of this note is to study some properties of slices. This
note is neither intended {o present substantial new results nor provide
an encyclopaedic survey, but rather to give certain aspect to the subject
for the choice of personal taste and preference.

1. Preliminaries and notations
Let a mapping f : § — X be given. By the canonical extension of

f, we mean an induced mapping ? : P(S) - P(X) by f with the
property :

?(4) = {f(a}la € A} foreach A€ P(I),

where P(S) is the power set of 5.
By the f-inverse image mapping, we mean an induced mapping

?_ : P(X) — P(S) by f with the property :

FT(B)={r € X|f(z) € B} foreach B e P(X).
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For two mappings f : S — X and g : §' — X', by the equality
of f and g, denoted by f = ¢, we mean that § = §', X = X', and
f(a) =g{a) for each a € S.

Note that for each mapping f: § — X, each of the following state-
ments is true :

— —

(1) Foreach B € P(X \ f(S)), f(B)=4.

(2) Foreach B€ P(X), fo f =BnN f(S)and f o F(B)C B.

(3) For each A € P(S), A C T o F(A).

(4) For each mappingg: X —» Y, g0 f = ?o? andgo f = ?o?.

(5) f is surjective if and only if _)?(S) = X if and only if ? 0 7 =
1p(x)y where 1p(x) is the identity mapping on P(X).

By the inclusion mapping of A C S into S, denoted by ¢4, we mean
the mapping i4 : A — § defined by i 4(a) = a for each a € A, so that
foreach EC S, is(E)=ENAand s;(E)=ENA

Any mapping with having the empty domain is called empty.

Note that for each mapping f : § — X and each A C S, each of the
following statements is true :

(1) For the restriction f]A of f to A, f_L: = ?o{z and }_I; = f,:o 7
(2) For cach E C § and each F C X, f|(E) = f| (AN E) and

o —
TP = A0 F(P).
(3) For each B C X and each F C X,

fl f| (B)=fl.. (BNF)= (BN F).

f(B) TF) FF) I.fU?)

Let (4,),es be a family of non-empty sets, let p, be a projection
of the cartesian product [] se sA; onto 4;, and let X, be a non-empty

subset of 4,. A subset b,(X,) of [;c; A; is called a slab of X, in

H 3€T A
Note tha,t each of the following statements is easily verified :

(1) f € B,(X;) if and only if f € [[;c; A; and f(j) € X,.
(2) H,eJXJ = mJGJE(Xj)-
(3) 11,645 \ By (X;) = B;(4, \ X,).



On slices 3

4 HjeJAJ \ Hjej X;= U;eJ (i’;(AJ \ X;)

For the sake of later use, we give the following.

LEMMA 1. For each family (A;),ey of non-empty sets and each
non-empty subset K of the index set J, any mapping Py : HJGJ A —
[licx Ax defined by Px(f) = flK for each f € [[, ¢y A; is surjective.

Proof. If K = J, then Pg is the identity mapping, so our Lemma
1s true. Let K # J and let g € [];cp Ar ; we are going to find an
f € 1,csAj such that Pr(f) = g. Since (A;),cnk is a family of non-
empty sets, we can find a choice function s for (4,),¢ MK, and hence
there exists a unique extension f on J of g and s such that f ‘ K=9

flpg =sond Pr(f) = g.

Let (A4,),cs be a family of non-empty sets, let p; be the projection
of the cartesian product [];.; A, onto the factor set 4,, and let K
be a non-empty subset of the index set J. For each j € J and each
G C A,, we define a relative slab of G to [], .y Ak, which will be

written ;‘?(G’)[erx 4, Dy the set such that

4_| er}(Ak fjeJ\K,
Ps nkeKAk -

{f € iex Arlpe(f) €G} ifje K.

2. Definition of slices and basic properties

Let (A,),cs be a family of non-empty sets, let p, be the projection
of the cartesian product HjeJ A, onto the factor set A, and let K be
a non-empty subset of the index set J.

For each z € [],; 4,, a subset

() 5, () = {f € [] 4,Ip,(f) = p,(z) foreach jeJ\K}

IENK 1€J

of [1,¢ 5 4, is called a K-slice through the point « parallel to [ ], < x Ax-
Note that each slice is also a cartesian product of sets.
In a set-theoretical sense, we have following.
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LEMMA 2. Let (A;),cs be a family of non-empty sets, let p, be the
projection of [] . ; A, onto A;, and let K be a subset of the index
set J. A K-slice through a point x € [ ; A; parallel to [[;cx Ax is
equippollent to ||, x Ax.

Proof. Let [, ny P, (p;j(z)) be the K- slice through the point z €
1,5 4, parallel to []; i Ai- Define a mapping

F. n P, (p,(z)) — HA"

J€ENK keK

to satisfy F(g) = g!K for each g € ;e n i p; (p,(x)). We are going to
show that F' is bijective. Noting that each ¢ € n;eJ\K 9, (p,(z)) has
the property such that ¢(j) = p,(z) for each j € J\ K, F(f) = F(g)
implies that f !K £ g! 5> from which it follows that f = ¢, and hence F
is injective. It remains to prove that F' is surjective. To this end, Let
a € [[iex Ak, then since s = (p,(z)),e sk is considered as a choice
function for {{p,(2}} | 7 € J\ K}, we can find an extension f on J
of a and s such that f]K = a and f]J\K = s, showing taht F(f) = a,

from which it follows that F is surjective.

A mapping F' mentioned above in the proof will be called a slice
bijection.

The K-slice through = € [] ., A, equipped with the relativized
topology with respect to the Tychonoff product topology for ] jer Ay
is called the K-slice space through the point z € ] yer A

‘THEOREM 1. Let (A,,7,),es be a family of non-empty topological
spaces, let (T;), . ; be the Tychonoff topology on the cartesian prod-

uct [1;- s A;, and let p, be the projection of the space [] . ; A, onto

2€J
the factor space (A,,7T;). Then each K-slice space (), j\ i 2, (p,(2))
through an z € [],.; A, is homeomorphic to the space ([],¢ 5 Ax,

(Tk)keK)-
Proof. Noting that each subbasic open set of the slice space

N;enk Pi(p;(2)) is denoted by a set pa(G) N (N, enx P (ps(2))) for
some m € J and open G in the space (A, 7,), and that each subbasic
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open sct of the product space ([[;cx A, {Ti)rex) 1s denoted by a set
of form p‘_m(G)]n 4, for some m € K and open G in the space
keK Ak

(Am, T1), the slice bijection F : nJGJ\K 5, (p,(2)) = [liex Ax gives

_-) -
that F((5m(G) 0 (N, e i 5525)) = F(@lpy, . from which
it follows that F has further properities of continuity and openness,
establishing that F' is a homeomorphism.

Letting K be a singleton {k}, we have the following

COROLLARY. Each {k}-slice space Y enx 9, (p,(z)) is homeomor-
phic to the space (Ag, T¢).

By a diagonal extension of a family (f, : X — A4,),es of mappings
into a cartesian proproduct HJEJ A;, we mean a mapping A,cyf; :
X — [I,c;4; such that for each projection p; of J1;.;A4; anto A;,
Py olesf;=f;.

LEMMA 3. Let (A,,T;),e5 be a family of topological spaces, lct
(T;} ,;eg be the Tychonoff product topology on the cartesian product
[1,c;4,, and let p, be the projection of the space (I;er 45 (T5)5¢)
onto the factor space (A;,7,). Then the diagonal extension of a family
(f; : (X,T) — (4,,7,));es of mappings is continuous if and only if
each f, is continuous.

Proof. let Aje;f, be the diagonal extension of the family (f,),es
of mappings. "Only if” part : Since each p, is continuous, and since
fy =p;08,e1f, for each 3 € J, each f, is continuous if the diagonal
extension A,eyf; is continuous. "If” part : Let G be 7,-open ; then

; (G)is subbasic open set in the product space (ILies 451 (T} ,c ), and

JET
hence

(Bye1f,)0 5,(G) =1, 0 By s £5(G) = £,(6)

shows that (f_,(G) is an open set in the space (X,T), from which it
follows that each f; is continuous.

LEMMA 4. Let ([],¢,4,, (7,),¢y) be a product space of a family
(4;,75)jes of spaces, let {J.|m € M} be a partition of the index
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set J, and for each m € M let Yin = [[;c; A;. Then the prod-
uct space (I[,¢;Aj;(7;);e ;) is homeomorphic to the product space

(HmeM Yo, (y‘m)meM) where Ym = (TJ')JG.I,,.‘

Proof. Let m € M and let Sm : (I1,c5 4;,(Ti};¢5) = (Y, V) be
defined by Sn(f) = f]Jm for each f € [[,c;4; ¢ then by Lemma 1,

S, is surjective for each m € M. Let G be a subbasic open set in the
space (Ym,Vm)} = (Il 47,({T)};c;.) ; then we can find a 7 € Jn

such that G = ﬁ(ﬂ)iy with H € 7,, and hence 3';(6‘) = p,(H)
is a subbasic open set in (][] ¢; 4;, (T) ,es) so that each Sp, is con-
tinuous, from which it foliows that the dlagonal extension Apmem S
is continuous by Lemma 3. We are going to show that the diago-
nal extension A,,ca:Sr 1s an open bijection. To this end, firstly, let
AmcrSn(f) = BrenSnls) for each m € M, then f|, = |,
for each m € M, from which it follows that the diagonal extension
AmerSm 18 injective.

Secondly, if g € [],,cps Ym then g|Jm € (Y, Vm) for each m € M,
and hence, since Sn(g) = ¢; , we have (AmemSm)(g) = g, showing
that A,,cpSm is surjective. Now, it remains to show that AeprSm
is open. To this end, let G be a basic open set in ([[;c; 4,,(T)),c ;)

; then we can find a finite set ' C J such that G = (Nycp Px(Ux)
where Uy € Ty for each k € K. Noting that My = {m|K N J, # 0}
is finite, and that K N J,, # @ for each m € Mg, (iegns, pr(Ur)
is a subbasic open set in (Yi, Vim) for each m € My, from which it
follows that (ASw)(G) = Npem, (Niexns, Px(Ur)) is open set in
(HmGM Ym’<ym>m€M)'

By Theorem 1 and Lemma 4, we have the following

THEOREM 2. Let (A,,7;);es be a family of topological spaces,
and let K C J have a partition {K,im € M,}. Then a K-slice
space njEJ\K p,(p,(z)) through an z € Il;c5 A, is homeomorphic to
(HmEM Yo, {ym>m€M) where Y,,, = Hjez{m A, and Y = <TJ);eKm‘

A topological space (X, 7) is said to be KV or a KV space whenever
it suffices the following (K] and [V} properities of separation axioms of
Kolomogoroff and Vietoris, respectively :
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{K] For each pair of distinct points, at least one has a 7-open neigh-

bourhood not containing the other.

[V] For each point z and each 7T-open neighbourhood G of z, there

exists 7 -open neighbourhood of z whose 7 -closure is contained in G.
For invariance properity, we have the following

TIHEOREM 3.
(1) Each subspace of a KV space is KV,
(2) Let (I, 7 X, (73) ;e 7) be a product space of a family (X,,T,};es
of topological spaces. Then the product space is KV if and only if each
slice space is KV.

Proof. (1) Noting that each subspace of a KV space satisfies the
conditions [K] and {V], the result follows at once.

(2) "Only if” part : Tt follows immediately from (1} that if the
product space is KV, then each slice space as a subspace of the product
space is KV. "If” part : Let each slice space be KV ; then sincefor-each
fe n,eJXJ and each slice space nJeJ\K ,(p,(f)) is homeomorphic
to a factor space (X, 73), each factor space (X, 7x) is KV. Let G be a
basic open set containing f € [],.; X, so that f € G =(},cx P, (G,)
for some finite X C J and G, € 7, for each 3 € K ; then p,(f) €
p,(G) = G, for each j € K. Since each (X}, T) is KV, we can find a
7, open neighbourhood of p,(f) such that clz, V, C G,, showing that

fe n p;(V;) C n {ﬁ;(clq; V) cC ﬂ p;(G;) =G,

JEK JEN JEN

from which it follows that the product space satisfies the condition
[V]. Let f # ¢ in the product space ; then for some & € J, pi(f) #
pr(g). Since (X, T;) is KV, we may assume that there exists a 73-open
neighbourhood Wy of pi(¢) such that pi(f)} ¢ Wi, from which it follows
that Bz (W) is a subbasic open set containing g such that f ¢ br(W3),
showing that the product space satisfies the condition [K].
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