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COMMON FIXED POINTS FOR
COMPATIBLE MAPPINGS OF TYPE (A)

Y. J. Cuo, J. P. KiMm aAND T. KUBIAK

1. Introduction

The concept of 2-meiric spaces has been investigated initially by S.
Gahler in a series of papers ([3]-[5]) and has been developed extensively
by S. Gahler and many others.

A 2-metric space is a set X with a real-valued function d on X x
X x X satisfying the following conditions :

(M) For two distinct points z,y in X, there exists a point z in X
such that d(z,y,2) # 0,
(M2} d(z,y,z)=0if at least two of z,y, z are equal,
(M3) d(xays z) = d(.’l), 2y y) = d(yazvx)a
(My) d(z,y,2) < d(z,y,u) + d(z,u,z) + d(u,y,2) for all z,y,z,u in
X.
The function d is called a 2-metric for the space X and (X, d) denotes
a 2-metric space. It has been shown by S. Gahler ([3]) that a 2-metric
d is non-negative and although d is a continuous function of any one
of its three arguments, it need not be continuous in two arguments.
A 2-metric d which is continuous in all of its arguments will be called
continuous.

On the other hand, a number of authors ([1), [2], [6]-[8], [11}-[12])
have proved many kinds of fixed point theorems in 2-metric spaces.
Especially, S.V.R. Naidu and J.R. Prasad ([18]) introduced the concept
of weakly commuting pairs of self-mappings on a 2-metric space and
the notion of weak continuity of a 2-metric, respectively, and they have
proved serveral common fixed point theorems by using the concepts of
the weakly commuting pairs of self-mappings on a 2-metric space and
the weak continuity of a 2-metric.
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Recently, G. Jungck e} al. ([9],[10}) introducted the concepts of com-
patible mappings and compatible mappings of type (A) in metric spaces
and proved some common fixed point theorems for these mappings.

In this paper, we prove some common fixed point theorems for com-
patible mappings of type (A) in 2-metric spaces. Qur results extend,
generalize and improve a number of fixed point theorems for commut-
ing and weakly commuting mappings in 2-metric spaces.

2. Compatible mappings of type (A)

In this section, we introduce some definitions, the concepts and some
properties of compatible mappings and compatible mappings of type
(A) in 2-metric spaces, and show that these mappings are equivalent
under some conditions. Throughout this paper, (X,d) denotes a 2-
metric space with the continuous 2-metric d.

DEFINITION 2.1. A sequence {z,} in a 2-metric space (X, d} is said
to be convergent to a point z in X, which is denoted by lim, o z, = 7,
if Bmp oo d(Tn,x,2) = 0 for all z in X. The point z is called the limst
of the sequence {z,} in X.

DEFINITION 2.2. A sequence {z,} in a 2-metric space (X, d) is said
to be a Cauchy sequence if hm,, o0 (T m, 25, 2) = 0 for all z in X.

DEFINITION 2.3. A 2-metric space (X, d) is said to be complete if
every Cauchy sequence in X is convergent.

DEFINITION 2.4. A mapping S from a 2-metric space (X, d) into
itself is said to be sequentially continuous at z in X if for every se-
quence {zn} in X such that lim, . d{z,,z,2) = 0 for all z € X,
limp oo d(Szp, Sz, 2)=0.

Note that, in a 2-metric space (X,d), a convergent sequence need
not be a Cauchy sequence, but every convergent sequence is a Cauchy
sequence when the 2-metric d is continuous on X ([18}).

DEFINITION 2.5. Let § and T be mappings from a 2-metric space
(X, d) into itself. § and T are said to be weakly commuting if

d(STz,TSz,z) < d(Sz,Tz,z)
for all z,2 € X.
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DEFINITION 2.6. Let S and T be mappings from a 2-metric space
(X,d) into itself. S and T are said to be compatible if

hm d(STz,,TSzp,2)=0

n—o
for all z € X, whenever {z,} is a sequence in X such that lim,_,, Sz,
= lim, oo Tzn =t for some ¢ in X.

Note that any commuting mappings are weakly commuting but the
converse is not true ({18}). In turn, any weakly commuting mappings
are compatible but the converse is not ture ([9]).

DEFINITION 2.7. Let S and T be mappings from a 2-metric space
(X,d) into itself. S and T are said to be compatible of type (A) if

im d(T52,,55%n,2)=0 and lm d(57Tz,,TTz,,2)=0
for all z € X, whenever {z,} is a sequence in X such that lim,_,o, Sxn
= limp oo T2, = t for some t € X.

The following propositions show that Definitions 2.6 and 2.7 are
equivalent under some conditions ([17]) :

PROPOSITION 2.1. Let S and T be sequentially continuous map-
pings from a 2-metric space (X, d) into itself. If S and T are compati-
ble, then they are compatible of type (A)

PROPOSITION 2.2. Let S and T be compatible mappings of type
(A) from a 2-metric space (X,d) into itself. If one of S and T is
sequentially continuous, then S and T are compatible.

As a direct consequence of Propositions 2.1 and 2.2, we have the
following :

PROPOSITION 2.3. Let § and T be sequentially continuous map-
pings from a 2-metric space (X,d) into itself. Then S and T are com-
patible if and only if they are compatible of type (A).

In [10], G.Jungck et al. gave two examples to show that Proposition
2.3 is not ture when two mappings S and T are not continuous. Next,
we give some properties of compatible mappings of type (A) for our
main theorems ([17]) :
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PROPOSITION 2.4. Let S and T be compatible mappings of type
(A) from a 2-metric space (X, d) into itself. If St = Tt for somet € X,
then STt = TTt = TSt = SSt.

PROPOSITION 2.5. Let S and T be compatible mappings of type (A)
from a 2-metric space (X, d) into itself. Suppose that lim, ., Sz, =
imp oo Tz =t for some t in X. Then we have the following :

(1) im,, oo TSz, = St if § is sequentially continuous at t.

(2) STt =TSt and St =Tt if S and T are sequentially continuous
at t,

3. Some lemmas

In this section, we introduce some lemmas for our main theorems.

Let A, B, S and T be mappings from a 2-metric space (X, d)} into
itself satisfying the following conditions :
(3.1) A(X) € T(X) and B(X) C S(X),
(3.2) there exists an k € (0.1) such that

d(Az, By, z) < hmax{d(Sz, Ty, z), d( Az, Sz, 2}, d(By, Ty, z),
%(d(Az,Ty,z) + d(Byx Sz';z))}

for all z,y,2 € X.

Then, by (3.1), since A(X) C T(X), for an arbitray point z, € X, there
exists a point zy € X such that Az, = Tz;. Since B(X) C S(X), for
this point z;, we can choose a point r3 € X such that Bz; = Sz3 and
so on. Inductively, we can difine a sequence {y,,} in X such that

(3.3)  yoan =Tzon41 = Azgn and  yYonpp1 = STans2 = Br2n4a

forn=0,1,2,....

LEMMA 3.1. Let A, B, S and T be mappings from a 2-metric spcae
(X, d) into itself satisfying the conditions (3.1) and (3.2). Then we
have d(yi,y,,yx) =0forz,5,k=0,1,2,..., where {y,} is the sequence
defined by (3.3).
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Proof. In (3.2), taking £ = ZTap42,¥ = Zon41 80d 2z = yg,, we have

d(Az3p42, BTons1,Y2n)
S h max{d(S:ng,ﬂ,g, Tx?n-l-l ) y2n)a

A(AZrn42, 52042, Y20 ), A(BT2n41, TT2n41, Y2n),

1
E (d(A‘TZﬂ-I-? ’ T$2n+1 3 yfln) + d(B$2n+l D S$2n+21 yﬁn))}
or, equivalently,

d(Yani2, Y2nt1,Y2n) < hmax{d(yont1, Y2n, Yon)s
d(Y2n+t2,Y2n+15Y2n ) A Yant1, Y2n, Yon ),

1
'2‘(d(y2n+2, Yor, Y2n) + d(y2n+l yY2nti, yzn))}

= hmax{0, d(y2n+2, Y2n+1+ Y20 ), 0, 0}
= h d(y2n+2, Yond1>Y2n ),

which is a contracdiction. Thus, we have d(y2,42, Y2an+1, Y2n) = 0. Sim-

ila‘rlya we have d(y2n+l3y2n-§-2a y2n+3) = 0. Hence, for n = 0,1,2,...,
it follows that

(3.4) d(Yn, Yntt> Ynt2) = 0.

Next, for all z € X, let d,(z) = d(yn,yn+1,2), n = 0,1,2,... . By
{3.4), we have

d(yn) Ynt2, Z) S d(yn) yn+27yn+l) + d(yns yn-l-laz) + d(yn+11 Yn+2, Z]
= d(yn’ Yn+1, Z) + d(yn+11yn+2az)

= dn(2) + dnt1(2).

Taking £ = T2n42 and y = 2,41 1n (3.2), we have
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d2n+1(2) = d(Y2n+2, Y2n+1, 2)
=d(Ar2n42, BTans1,2)
< hmax{d(Sz3n4+2, TT2n+1, 2),

d(AzZn-i-?’ Sx2n+2) Z), d(B$2n+l ) Tx2n+1 » Z),

1

'é(d(szn-n, Tzyn41,2) + d(B2at1, ST2n42,2))}
(3.5) = hmax{d(y2n+1, Y2n, 2),

d(y'a”n-‘l-Zv Yoant1s Z), d(y2n+l yYon, Z),

1
'é’(d(y2n+23 Yon, z) + d(y2n+h Y2n+1, z))}
< hmax{d2a(2), d2n+1(2), d2n(2),

5(dan(2) + dan ().

Now, we shall show that {d,(z)} is a non-increasing sequence in R*.
In fact, by (3.2), we have

dan(2) < h dyp-1(2) < dzn-1(2)

for every integer n. Now, suppose that d,41(z) > du(2) for some n.
By (3.5), we have dyny1(2) < hdapy1(2) for some h € (0.1), which is a
contradiction, since dy,4+1(z) > 0. Therefore, the sequence {d,(z)} is
non-increasing in R*.
Now, we claim that d,,(ym ) = 0 for all non-negative integers m, n.
Case 1. n > m. Then we have 0 = dp(ym) 2> dnlym)-
Case 2. n < m. By (M,), we have

dn(ym) S dn(é}m«-l) + dm-—l(yn)
< du(Ym—1) + dalyn)
= dn(ym—1)~

By using the above inequality repeatedly, we have

dn(ym) < dn(ym—d) <. L dn(yn) = Oa

which completes the proof of our claim.
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Finally, let ¢,7 and k£ be axbft,ra.ry non-negative integers. We may
assume that ¢ < 7. By (M), we have

(Y15 Y3 yr) < dj(y,) + dj(yk) + d(Yet1, Y, yk)
= d(Y141, Y, Y& )-

Therefore, by repeatition of the above inequality, we have

dyi, vy, k) < AW, ¥, k) < oo < d(yi, y5,9%) = 0.

This completes the proof.

LEMMA 3.2. Let A, B,S and T be mappings from a 2-metric space
(X,d) into itself satisfying the conditions (3.1) and (3.2). Then the
sequence {y,} defined by (3.3) is a Cauchy sequence in X.

Proof. In the proof of Lemma 3.1, since {d.(2)} is a non-increasing
sequence in Rt by (3.2), we have

dl(z) = d(yby‘l’az)
= d(Az,, Bz, 2)

< hmax{d(Szs,Tx;,z),d(Azs, Sxq,2),d(Bz1,Tx1,2),
1 }
§(d(A$2, Try,z) + d(Bzxy,Szy,2))}

= hmax{d(ylayﬁ’z)rd(yhyhz)ad(ylayﬂaz)1

%(d(yz, Yo,2) + d(y1,41,2))}
< h do(2).

In general, we have d,,(z) < h"dy(2), which implies that im,_, o, dn(2)
= 0. Now, we shall prove that {y,} is a Cauchy sequence in X. Since
lHmy, o dy(z) = 0, it is sufficient to show that a subsequence {yon} of
{yn} is a Cauchy sequence in X. Suppose that the sequence {yq,} is
not a Cauchy sequence in X. Then there exist an € > 0 and strictly
increasing sequences {my}, {nx} of positive intergers such that k¥ <
nE < Mg,

(36) d(y2nuy2mk:2) 2> € and d(y2ﬂk;y2mh—2! Z) <e
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for all k = 1,2,... . By Lemma 3.1 and {M,), we have

d(yZnuyZmuz) - d(y2n; sYam, -2, z) < d(yka—% Yomy z)
< dam,—2(2) + dam, —1(2).

Since {d(Y2n,,Y2m,,2) — €} and {€ — d(yzn,,Y2m, —2,2)} are sequences
in R* and lim,—co du(z) = 0, we have

(37) kl——l?c}o d(yz'u 2 Y2mg Z) =¢ and kliigo d(yan y¥2m,—2, Z) = €
Note that, by (M,),
(3.8) |d(z,y,a) — d(z,y,b)| < d(a,b,z) + d(a, b, y)

for all x,y,a,b € X. Ta'king T =Yoo ¥ =G, 8 = Yom, —1 and b= Yom,
in (3.8) and using Lemma 3.1 and (3.7), we have

(39) k]i»ngo d(y2mg7y2mg-l’z) =&

Once again, by using Lemma 3.1, (3.7) and (3.8), we have
lim d(y2n;+1$y2mg; Z) =€ and lim d(yan—lay2mk—11 Z) = E.
k—oo k—co

Thus, by (3.2), we have

AY2mes Y2n,+1,2)
= d(AZom,, BZan,41,2)
< hmax{d(Szom,,TT2n, +1,2),
d(AZapm, , STom,y,2), d(BZon,+1, TT2n, 4+1,2),

1
(3.10) 5(d(Az2m, , To2n, 41,2) + d(Bany 41, 522m,.,2)))
= h mm({d(y2mk -1 yznk b Z),
d(y2mk yY2my ~1, Z), d(y2mx+l ' Y2ngs z)a
1
E(d(yl’mk y¥on, Z) + d(y‘Zm"i-l yYomg~11 2))}.

Letting & — oo in (3.10) and noting that d is continuous, we have
e < h € < ¢, which is a contradiction. Therefore, {ys,} is a Cauchy
sequence in X and so the sequence {y,} defined by (3.3) is a Cauchy
sequence in X. This completes the proof.

The following lemma was introduced by S.L. Singh ([22], [23]) :
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LEMMA 3.3. Let {z.} be a sequence in a complete 2-metric space
(X,d). If there exists an h € (0,1) such that

d(xna xn-l-l)z) < hd(zn—laxnv z)

for all z € X and n = 1,2,..., then the sequence {z,} is a Cauchy
sequence in X.

4. Common fixed point theorems

In this section, we prove two kinds of common fixed point theorems
for compatible mappings of type (A) in 2-metric spaces. First, by using
Lemma 3.2, we prove the following :

THEOREM 4.1. Let A,B,S and T be mappings from a complet 2-
metric space (X, d) into itself satisfying the conditions (3.1}, (3.2), (4.1)
and (4.2) :

(4.1) one of A, B, S and T is sequentially continuous,

(4.2) the pairs A, S and B, T are compatible mappings of type (A}).
Then A, B,S and T have a unique common fixed point in X

Proof. By Lemma 3.2, since the sequence {y, } defined by (3.3} is a
Cauchy sequence in X and (X, d} is complete, it converges to a point u
in X and so the subsequences {y2,} and {y2n+1} of {yx} also converge
to the point u, that is, {Az2,}, {Bxant1}, {STan+2} and {Tzoaq1}
converge to u. Now, suppose that T is sequentially continuous. Since
B and T are compatible mappings of type (A), by Proposition 2.5,
we have BTz9n41, TTZon41 — Tu as n — oco. Putting 2 = 24, and
y = TZ3541 in (3.2), we have

d(Am2n> BTzyn4, z)
< hmax{d(Szzn, TTTon41,2),

(4.3) d(AZ2n, STon, 2), d(BTzanq1, TT 22041, 2),

%(d{szn, TTzony1,2) + HBTz2041,5%20,2))}
As n — oo in (4.3}, we have
d(u, Tu, 2) < hmax{d(u, Tu, z),d(u, u, z),d(Tu,Tu, z},
S{d(u, Tu, 2) + d(Tw,u, 7))
< h d(u,Tu, z),
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which implies Tu = u. Again, replacing = by 72, and y by u in (3.2),
respectively, we have

d(Azzn, Bu,z) < hmax{d(Szn,Tu,z), d( Az3n, STaon, 2),
d(Bu, Tu, ), %(d(sz,,, Tu, z) + d(Bu, Sz2a,2))}.

As n ~» co in (4.4), we have
d(u, Bu, 2z} < hmax{d(u,Tu, z}, d(u,u,z),d(Bu,u, z),
%(d(u, Tu, ) + d(Bu,u, 2))}
< k d(u, Bu, z),

which implies Bu = u. Since B(X) C $(X), there exists a point w € X
such that Bu = Sw = u. By using (3.2) again, we have

d(Aw,u, z) = d(Aw, Bu, z)
< hmax{d(Sw, Tv, z), d( Aw, Sw, z), d(Bu, Tu, ),

%(J(Aw, Tu,z}+ d(Bu, Sw, z))}
< h d(Aw,u, z),

which implies Aw = u. But since A and S are compatible mappings of
type (A) and Aw = Sw = u, by Proposition 2.4, d(ASw, §Sw,z) =0
and hence we have Au = ASw = SSw = Su. From (3.2), we have also
d(Au,u, 2) = d(Au, Bu, z)
< hmax{d(Su, Tu,z),d( Au, Su, z), d(Bu, Tu, z),

%(d(Au, Tu,z) + d(Bu, Su,z))}
< h d(Au,u, 2),

which implies Au = u. Therefore, we Au = Bu = Su = Tu = u, that
1s, u is a common fixed point of 4, B, S and T. The uniqueness of the
point u follows easily from (3.2). Similarly, we can also complete the
proof when A or B or S is sequentially continuous. This completes the
proof.

Putting A = B and S = T in Theorem 4.1, we have the following :
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COROLLARY 4.2. Let A and § be mappings from complete a 2-
metric space (X, d) into itself satisfying the following conditions :

{(4.5) one of A, S is sequentially continuous,

(4.6) A(X) C S(X),

(4.7} A and S are compatible mappings of type (A},
(4.8) there exists an h € (0,1) such that

d(Az, Ay, z) < hmax{d(Sz, Sy, z),d( Az, Sz, z), d( Ay, Sy, z)

%(d(Aa:, Sy,z) + d(Ay, Sz, 2)))

for all z,y,z € X.

Then A and S have a unique common fixed point in X.
Secondly, by using Lemma 3.3, we prove the following :

THEOREM 4.3. Let A,B,S and T be mappings from a complete
2-metric space (X, d) into itself satisfying the conditions (3.2}, (4.2),
(4.9), (4.10) and (4.11) :

(4.9) AT(X)UBS(X) C ST(X),
(4.10) ST =TS,
(4.11) S and T are sequentially continuous.

Then (1) A and S have a common fixed point v in X, (2) B and T
have a common fixed point v in X. Indeed, the point u is a unique
common fixed point of A, B,S and T.

Proof Since AT(X)UBS(X) C ST(X), for an arbitrary point z, €

X, we can construct a sequence {z,} in X such that

A.szn = Sszn+1 and Bsx2n+1 = ST.’Egn+2
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forn =0,1,2,.... By (3.2), we have
d(STzan+1,S5T2n42,2)
= d(ATz25,BSz2n41, 2)
< hmax{d(STz2n, T SZ2n41,2),
d(AT 230, STy, 2),d(BSTon41, T'STon41, 2)

1
E(d(ATa:g,,, TS$2n+] ,Z) + d(BSSCzn.H s ST&:zn, Z))}

= hmax{d(STz2,, 5T x3541,2),
d(ST.’L’z,,.;.l 3 STmz,;, z), d(Sszn+2, ST.'Ezn.H ’ z),

1
é‘(d(STJ:Zn-H 18T x9n41,2) + A(ST23p42, ST224,2))}

(4.12)

— hmax{d(STen, SToans1,2), %d(smmz, ST230,2)}

and so we have d(STzony1, ST22n42, 5T 22,) = 0. From (4.12), we
have
d(STz2n41,5TTon42,2) < h d(5T 295, ST2op 41, 2).

Similarly, we have
d(STzon+2,5TT2n43,2) < h dSTxont1,STT2042,2).
Thus, for n =0,1,2,..., we have
d(STxp41,5TTp42,2) <h d(STxp, STz 41, 2)

for all 2 € X. Therefore, by Lemma 3.3, the sequence {STz,} is a
Cauchy sequence in X. Since (X,d) is complete, it converges to a
point u € X and so the subsequences {ATz,,} and {BSzs,4,} of
{STx,} also converge to the point u.

Now suppose that S is sequentially continuous. Then we have $5Tz,
— Su as n — oo. Since {ATz,} and {STz,,} converge to the point
u, by Proposition 2.4, ASTz;, — Su as n — oo. Thus, putting
= STzs, and y = Sz9,41 in (3.2), we have

d(ASTﬂ:gn, BS$2n+1, Z)
< hmax{d(SS5T22,,TSTon41,2),
(4’13) d(AS‘T.’Egﬂ, SSTIzn, Z), d(BS$2n+1 s TS-an-i-l N Z),

1
E(d(ASszn, TSx2n+1, Z) + d(BS.’I?Qn.}.; s SSTEQ,,_, 2))}
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As n — oo in (4.13), we have d(Su,u,2) < h d{Su,u, z) and so, since
h € (0,1), we have Su = u. Again, putting z = v and y = Szg,4, In
(3.2), we have

d(Au, BS:cg,,H, Z)
_<_ h max{d(Su, TS$2n+1 N z),
(4.14) d(Au, Su, 2),d(BSzan41, TSTan41, 2),

1
E(d(AU, TS&'Q,;.;.],Z) + d(BS$2n+1, Su, Z))}

As n — oo in (4.14), we have also d(Au,u,2) < k d(Au,u,z) and so
Au = u. Therefore, Au = Su = u, that is, v is a common fixed point
of A and S§. Similarly, in the case that T is sequentially continuous
and B, T are compatible mappings of type (A), we have Bu = Tu = u,
that is, 4 1s a common fixed point of B and T.

Finally, we shall prove that the point u is a unique common fixed point
of A,B,S and 7. In fact, by using (3.2}, we have

d(Au, Bu, z) < hmax{d(Su, Ty, z),d{ Au, Su, z), d(Bu, Tu, z),
1
E(d(Au, Tu,z) + d(Bu, Su,z))},

which implies Au = Bu. Therefore, u is a common fixed point of
A,B,S and T, and the uniqueness of the point v follows easily from
(3.2). This completes the proof.

REMARK. (1) Theorems 4.1 and 4.3 extend, gencralize and improve
some fixed point theorems for commuting mappings and weakly com-
“ muting mappings in 2-metric spaces ({8], [13], [15], [19], [20], [22]-[24]).

(2) If all mappings in Theorems 4.1 and 4.3 are sequentially continu-
ous, then Theorems 4.1 and 4.3 are still true even though the condition
(4.3) is replaced by the compatibility from Proposition 2 3.

(3) If we put A =B and § = T in Theorem 4.3, then we have also
Corollary 4.2.
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