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ON AN ANALYTIC CONTINUATION OF
THE MULTIPLE HURWITZ ¢ -FUNCTION

TAE-YOUNG SEO AND Bo-MYounG OK

1. Multiple Hurwitz {-function and multiple Bernoulli
polynomials

In [2], E.W. Barnes defines the r-ple Hurwitz {-function, for Re s >

(e o)

(1) (;,.(s,a|w1,w2,--- awr) = Z: (j:ljlw_)”

my,mz, - :m!‘:o

where w = myw; +maws + - -+ +m,w, and also gives a contour integral
representation

(1 —s —ez(_z)e-l
s, alwr, wa, - ywp) = (1 )/nk 11—-)

e—wkz)

where the conditions for @ and wy,ws,- - - , w, and the possible contour
L is given by [2}.

DEFINITION 1. In (1), we restrict these when w; = wy=---=w, =1,
that i1s to say, @ > 0, Res > n

@ Gea= Y rkthbet k)

ky ;k2)' . )kn=0

{n(s,a) is called as the n-ple multiple Hurwitz {-function.
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THEOREM 2. ({2]) (x(s,a) can be continued to 2 meromorphic func-
tion with poless=1,2,--- ,n,a > 0.

Proof. For by the contour integral representation

(1 -s) e (—z)* !
Cnls @) = =7 ,[c A= e s @&

where the contour C is given as Fig.1, the integral is valid for a > 0
and all s, so (n(s,a) has possible poles only at the poles of I'(1 — s),
ie., s =1,2,3,---. But by the series definition (,(s, a) is analytic for
Res > n.

Fig.I

In particular, when n =1, (i(s,a) = 3.5 _o(a + k1)~ = ((s,a).
This is the well-known Hurwitz (-function.

DEFINITION 3. We define the k-th Bernoulli polynomials of order

n, nBr(a), whose first derivative ,,B,(:-) (a) appears as the cofficient of

z* in the expansion

(-1)"ze™** _ (=1)"An(a) + (=1)""'An_1(a)

(3) (1 — e—-x)n - an—1 an—2 LR
+ Azia) _Ay(a)+ Z (*1’3'1:—1 nt)(a)zk
k=1 ’

which is valid in the annulus {2 |0 < |z]| < 27}.
Now, ,,Bi{a) is called the Multiple Bernoulli polynomial.
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THEOREM 4.
(2)
2B
Afa) = B (@) ana 20D g
TE+1
fork=1,2,---.

Proof. We differentiate (3) with regard to a ; we obtain

(L) ()P (@) | (S0P )

(l_e—x)n - Zn—1 Zn—2
+ ED4@ A0 | Db ,f(z)(“) -1

Equatting now coefficient of like powers of z in (3) and we get A,_,4)
(a)=A!_[(a), ¢ = 1,2,--- ,n — 1 and As(a) = .B®(a). Hence 4,

(@)=nBU"*V(a) and L,:;;r—‘“— = .Bi(a). Thus, the fundamental
expansion {3) may be written

@ G SN )WBO

- (—l)k—lan'(a)zk
(A—e7)m +

s—1 f
s=1 Z k=1 k'

2. An analytic continuation of the multiple Hurwitz (-
function

THEOREM 5. (,(s,a) is a meromorphic function with simple poles
at s=1,2,---,n

Proof. From (2), for Res > n,

o0

Cnls, @) = Z (@ +ki+ka4 -+ ka)"
ki,ka, e kn=0

We know that

I'(s) = ] e tdt=(a+ ki +- -+ k) / e—(atEittka)tya—1 g
0 0
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Then we have, for Res > n

C,,(s,a)I‘(s) =j; .(l__th)n.e—a(ts—l dt

1 00 1 ¢ 1
= +/ )t" et
(]o 1 (1-et)"

Now, when |s| < ¢, where ¢ is any positive number, we have

* i t 1 g 1 ¢ 1
T | dt = e —— ___dt
/1 e g Ty | / T

1 oo
S / tc—le—at dt
1—-e-t 1

There, the second integral in (5) converges uniformly in every compact

subset in the whole complex plane C and so represents an analytic
t(n—a)
e

function in C. On the ohter hand, the function (—t——-—l—); is analytic
e —
in a deleted neighborhood of zero and
et(n—c} teﬁ%l
) n_ - =t — =
}I—Ii%t (et =1)" }1—1013) et—1 1#0,
but
. 1 ct(n-—a)
Y Ty
et(n—a)
Thus (—F-T)m has a pole of order n at zero. Also, by (4), for 0 < }¢| <
et — n
2r
ts#lewﬂt (n+1} s—~n—1 (n) s—n
Aoy = B @ B @

+ (=DM RB (@) 4 (1) B eyt

o (—1)" =1 Bi(a) i ye2
+ ; x ¢ .
=1
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Using this expansion and term by term integration (justified by uniform
convergence) the first integral in (5) can be written

1 ) e—ai
P ————dt
]o (1—e7t)n

_oBM@)  WBM(e) (=1)™*? B (a)

+...+

s—n s—n+1 s—2
MGHARY: (OIS SR C et 40
s—1 k+s—-1 k! '
Consequently, for Res > n, we can write
Cnls, a)
_ 1 [aB™e)  WBM(a) PR G Vi B (a)
I'(s) s—n s—n+1 s—1
(6) 1 i 1 (=)~ B(g)
k+s—1 k!
oo 1s—1_,—at
" _1_ B g

s Sy Ao

As said before the thirdterm on the right in (5) is entire, and the series

n+k 1 B(l)
Z k+s 1 = £ (@), is meromorphic in the complex planc

1
with simple poles at —k if ,,B}:)(a) #0,k=0,1,2,---. Since —1-_,—(5 1S
_entire with zeros at 0,1,2,- -+, the right hand side of (6) is meromorphic

on all of C with simple poles at s =1,2,--- ,n
COROLLARY 5. The residue of (x(s,a) at s =7 (r =1,2,--- ,n) is

(r _1 1)!(—1)”"::35’“)((1)-

Proof. From (6),

fim(s — r)(a(s, ) = ;(1—)(—1)'*" B H(a)

(7‘—1)1( -1 B(TH)( )
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