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A Financial Theory of the Demand for Insurance With Simultaneous
Investment Opportunities

Robert C. Witt and Soon Koo Hong*

ABSTRACT

This paper develops a theory of the demand for insurance. The present model incorporates
insurance demand, time value of insurance premium, and demand for riskless and risky assets
simultaneously within the expected utility framework. For a special case of CARA, an
insurance decision can be made separately from other portfolio decisions. However, in general,
the interactions of both decisions cannot be ignored even when insurable and speculative risks
are stochastically independent. In particular, the role of risky investment in hedging insurable
risk is demonstrated and it is shown that this role cannot be duplicated by an insurance
contract. When the investment decision is made simultaneously with the insurance decision,
some of the classic theory on insurance should be modified. As an example, the authors
characterize the sufficient conditions, under which the Bernoulli criteria (without and with
premium loadings) hold or are violated in terms of the net gain of risky investment, the net
cost of insurance, and the stochastic relationship between insurable and speculative risks. The
authors interpret the results using the Rothschild and Stiglitz's (1970) notion of “increase in
riskiness".

I. Introduction

One of the most fundamental theorems in insurance economics is the Bernoulli
principle that, with an actuarially fair premium, full coverage is optimal [Arrow (1963,
1974), Smith (1968), Mossin (1968), Ehrlich and Becker (1972), Schlesinger (1981)]. An
immediate corollary to this result is that, if the insurance premium includes any positive,
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proportional loading, then only partial coverage of insurance is optimal [Smith (1968),
Mossin (1968), Schlesinger (1981)]. However, all of these analyses considered only one
source of (completely insurable) risk within a model of timeless uncertain prospects. This
approach omits some essential aspects of the individual's insurance purchasing behavior.
First, a lack of reality results from isolating the insurance decision from other portfolio
decisions [Mayers and Smith (1983)]. A typical individual's opportunity set includes
riskless and risky financial/physical assets or investments. The joint interaction between
insurable risks and speculative risks may have an impact on the insurance premium and as a
consequence on the individual's insurance purchasing behavior. The Bernoulli principle
has provided powerful rationale for the existence of insurance market, but the existence of
other uninsurable risks, as shown in Doherty and Schlesinger (1983a, 1983b), may cause
the Bernoulli principle to be violated.! Second, as a result of ignoring other portfolio-
decision variables, most of the traditional analyses adopted timeless uncertain prospects.
Thus, the time value of money (or opportunity cost of the insurance premium) could not be
reflected in the equilibrium premium concept. In practice, there is a significant gap between
the time when the premium is collected and the time when insured losses are indemnified if
losses are incurred. From the supply side of insurance, it is well known that the premium
collected in advance provides funds which can be invested in riskiess or risky assets, and
therefore the premium should be adjusted to recognize the investment opportunities
[Doherty and Garven (1986), Cummins and Harrington (1987), MacMinn and Witt (1987),
D'Arcy and Doherty (1988), D'Arcy and Garven (1990)]. Hence, at least in this respect, a
limitation of traditional insurance demand theory is its failure to address the relationship
between insurance premiums and risk premiums on other marketable assets. According to
modern corporate finance, an insurance company can be considered as a financial
intermediary between policyholders and the capital market. From a viewpoint of insured,
the concept of economic insurance premium should include alternative use of insurance
premium. This consideration may allow for different interpretations.

Recently, uninsurable background risks or investment opportunities have been
introduced into the traditional risk model of the demand for insurance. In this insurance
literature, two approaches can be observed. The first approach employed initial random
wealth. Doherty and Schlesinger (1983a, 1983b) and Turnbull (1983) were among the first
to examine the theory of optimal insurance purchasing in the presence of uninsurable risk.

IFurther discussion of uninsurable background risk can be found in Hirshleifer and Riley (1979), Smith and
Buser (1987), Doherty (1984), Kahane and Kroll (1985), Schlesinger and Doherty (1985), Schienburg
(1986) and Briys, Kahane and Kroll (1988).
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In partcular, Doherty and Schlesinger (1983b) questioned the existence of "complete”
insurance markets and showed that the traditional Bernoulli principle was not always
applicable to the "incomplete” insurance markets. Doherty and Schlesinger (1983b) provide
perhaps the closest approximation to the problems addressed in this paper. They introduced
random initial wealth in the traditional risk model. The rationale for random initial wealth
was that the individual wealth typically included uninsurable risky assets. However,
Doherty and Schlesinger (1983b) implicitly assumed that the level of risky assets were
uncontrollable, or that the insurance decision would be made after the individual's buying
strategies for risky assets were completed. This is not a general case. Since investment can
serve as an alternative instrument for controlling insurable risk, interaction between
investment and insurance decisions cannot be ignored in determining optimal level of
insurance. Endogenizing investment decisions in the model will provide a more realistic
look at the tradeoff between investment and insurance.

More Recently, when investigating aspects of demand for insurance, investment
opportunities were explicitly considered in Doherty (1981, 1984), Mayers and Smith
(1983), Kahane and Kroll (1985), and Smith and Buser (1987). All of these studies were
based on modern portfolio theory. In particular, Mayers and Smith (1983) analyzed the
individual's demand for insurance as a special case of general portfolio hedging activity. In
their modcl, the demand for insurance contracts was determined simultaneously with the
demand for other assets in the portfolio. They argued that the demand for insurance
contracts was generally not a separable portfolio decision because of significant
interdependence between insurance claims and investment returns.

In prior research, it has been frequently convenient to characterize return and
risk by the mean and variance of the distribution of final wealth. Although the portfolio
approach has provided significant insights about the choice of insurance coverage, it
suffers from limitations of the mean-variance criterion. In portfolio theory, it is standard to
impose restrictions on utility functions or joint distributions of returns such that all
individuals choose mean-variance efficient portfolios. It is well known that, if utility
functions are quadratic or if the probébility distributions are approximately normal, the
mean and variance provide the basis for an acceptable approximation of expected utility.
However, the use of quadratic utility functions are regarded as somewhat unreasonable
since they exhibit increasing absolute risk aversion (Arrow (1965)). The requirement of
normality assumption may even be a more serious obstacle to examining an individual's
insurance buying strategies in a mean-variance framework. For the case of the individual
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rather than the firm, the exposures to property-liability risks are generally not well
diversified. Moreover, property-liability risks are multiplicative type of risks involving the
risk associated with the loss frequency distribution and the risk associated with the loss
severity distribution. It may not be correct to describe this risk in terms only of a
continuous density function which ignorses the non-zero probability of no loss [Smith
(1968), Gould (1969)]. Possible skewness of loss distributions may present serious
problems [Fieldstein (1969), Schlesinger and Doherty (1985)].

The purpose of this paper is to extend the traditional one source of insurable
risk model of the demand for insurance by simultaneously considering the demand for
riskless and risky assets within an expected utility framework. Although property-liability
risks are crucial in determining the optimal amount of insurance coverage, the riskless
interest rate and the random return of the risky assets held in the portfolio are also at the
heart of the decision making problem. The model of this paper can be considered as a
synthesis and generalization of previous works. That is, on the one hand the present model
extends that of Mayers and Smith (1983) in that it assumes entire class of risk averse utility
functions and distribution functions by employing expected utility hypotheses. On the other
hand, it also generalizes that of Doherty and Schlesinger (1983b) in that it endogenizes
riskless and risky investment decisions simultaneously as well as the insurance decision
within the context of an individual's whole portfolio, and so explicitly recognizes the
opportunity cost of the insurance premium. Moreover, following the insurable risk model
of Smith (1968), Gould(1969), or Schlesinger (1981), our model explicitly considers a
non-zero probability mass for the case of no loss. The results of our model include those of
previous works as special cases, and are substantially different from them in several cases.
In particular, we derive the following results.

(1) It is shown that the individual will invest in a risky asset up to the point where
expected marginal rate of return for the risky asset equals the riskfree rate plus the
marginal risk premium. However, unlike the results under the traditional investment
portfolio model, strict risk aversion is not sufficient to yield a positive marginal risk
premium in the presence of an idiosyncratic property-liability risk. The sign and
size of marginal risk premium depends on the stochastic relationship between the
insurable and speculative risks. Similarly, the individual will choose the level of
insurance coverage such that his marginal premium equals the present value of the
expected marginal indemnification minus the marginal risk premium for his

insurance contract, where the negative marginal risk premium implies a positive
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loading. However, unlike the result of the traditional one source of risk model, if
investment and insurable risks work as natural hedges each other, the risk averse
individual may require a negative loading for his insurance contract,

We examine the interactions between the investment and optimal insurance
decisions in more detail. We show that for the given stochastic conditions, it will
never be optimal for the individual exposed to property-liability risks to share his
risks only with an insurer without investing in risky assets. The conditions
specified on the stochastic relationship between insurable and speculative risks
include all independence and positive interdependence cases, and also characterize
the extent of the negative interdependence. In these cases, a risky asset can play a
positive role in hedging insurable risk, and this role cannot be duplicated by
insurance contract alone. That is, we show that the individual with optimal
insurance coverage without holding a risky asset can always obtain a final wealth
distribution with less dispersion by positively investing in a risky asset, while his
mean final wealth remains constant. Therefore his expected utility is improved.

Demand for insurance is generally not a separable portfolio decision. However, we
show that if the utility functions exhibit constant absolute risk aversion (CARA),
the insurance decision can be completely separated from other portfolio decisions,
even if insurable and speculative risks are stochastically interdependent. This is
important because, given separation, most aspects of the optimal amount of
insurance under traditional one source of risk model remain valid.

The Bemoulli principle is reexamined. We show that the Bernoulli principle holds if
insurable and speculative risks are uncorrelated or negatively interdependent. This
result is an extension of the one obtained by Doherty and Schlesinger (1983), in
that the normality assumption is dropped for the negatively interdependent cases.
We also demonstrate that if positive interdependence exists the Bernoulli principle
will be violated. We provide an intuitive interpretation for these results using the
notion of mean preserving spread. That is, for the case of a positive
interdependence, since insurable and speculative risks work as natural hedges, by
moving to partial insurance from full coverage the individual's total final wealth
distribution always loses the weights in both tails, which makes it less "risky" in
the Rothschild-Stiglitz (1970).
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o) Under the more realistic assumption of a positive proportional loading in the
premium, we show that the possibility for partial or full coverage as an optimal
choice depends on the net expected gain on the risky investment, the loading factor,
and the extent of interdependence between the speculative and insurable risks. The
results of this model are totally new to the exising insurance-economics literature
and may have significant contribution to establishing economic insurance premium
principles. We specify sufficient conditions for partial insurance coverage, which
include non-negative interdependence and characterize the extent of negative
interdependence. We also characterize the extent of negative interdependence which
suffices for full insurance coverage. Even though these results are sharply
contrasted with the traditional Bernoulli theorem, we provide an intuitive
interpretation with the concept of a mean preserving spread.

The paper is organized as follows. In Section II, we develop the model. We
also derive and examine the conditions for the optimal investment and insurance plan. In
Section III, we demonstrate the role of a risky investment in hedging insurable risk. A
separation condition for investment and insurance decisions is displayed in Section IV. In
Section V and VI, we reexamine the Bernoulli principle and the possibility of full coverage
with proportional loading, respectively. Section VII concludes the paper.

II. The Optimal Investment and Insurance Decisions

We employ a simple two-date model or a now and then model. An individual
makes simultaneous insurance and investment decisions now, at time 0, and all
uncertainties are resolved then, at time 1. The objective of the individual is assumed to be
the maximization of expected utility in the von Neumann-Morgenstern sense. At time 0, the
individual has to allocate his initial wealth, W, for investment or insurance purposes. Let L
denote the random loss amount such that E[L]<ee where E[.] is the expectation operator.
First, by assuming a coinsurance contract,? the individual can buy insurance coverage b (0

2Coinsurance and deductibles are the most prevalent insurance contracts observable in the real world. A
coinsurance contract approach rather than deductibles is adopted in the present model because of its
superiority over deductibles in risk sharing arrangements. As noticed by Borch (1983), deductibles do not
seem very relevant in a theory of risk bearing, which assumes that insurance companies are risk neutral.
Deductibles should be seen as a practical device for avoiding the expenses involved in checking and paying
compensation for negligible losses. Furthermore, unlike coinsurance case, the second-order condition for the

optimal deductible is not easily satisfied in maximizing expected utility (see Mossin(1968) and Schlesinger
(1981)).
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< b £ 1) for a premium p(b) against random loss L, where b denotes the coinsurance
coefficient (p'(b) > 0). Next, suppose that the dollar amount, a, is invested in a risky asset
(or a portfolio of risky assets), then the remainder of initial wealth, W-a-p(b), can be used
for investment in a riskless asset. We assume that a or W-a-p(b) may be negative since
short sales in risky and riskless assets are allowed in the model. However, b will be
restricted to 0<b<1, since insurance is assumed to be a contract of indemnity.

At time 1, the individual realizes the cash flows from his investment decisions,
and the insured losses are paid by a default-free insurance company if the losses are
incurred. The dollar amount, a, in risky asset will produce final stochastic return, aR,
where R denotes one plus the random rate of return such that E[R]<eo, and W-a-p(b) in the
riskless asset will produce final fixed return, [W-a-p(b)]R¢, where R¢ denotes one plus the

riskfree rate of return. Let q denote the probability of loss, then the individual's final
wealth, Y, will be given by random amount Y if no losses occur, where

Y =Y = [W-a-p(b)]R¢ + aR; with probability 1-q,
or Y if losses do occur, where
Y =Y =[W-a-p(b)]R¢ + aR - (1-b)L; with probability g.

More simply, final wealth, Y, can be written by

Y = [W-a-p(b)]JRf+aR - h (1-b)L, 2.1

where h is a random variable which has the value of zero with the probability 1-q, or one
with the probability q. That is, the random variable, h, denotes the risk of loss frequency,
while the random variable, L, reflects the loss severity given that a loss has occurred and is
the only insurable risk in the model. Thus, the individual's total loss distribution (or pure
premium distribution) can be obtained by combining the loss frequency distribution with
the loss severity distribution. The random loss amount, L, has a conditional probability
distribution in the sense that it shows the potential size of loss given that a loss has
occurred (that is, h=1). By combining or convoluting the loss frequency and loss severity
distributions, this makes the model considerably more realistic. In our model, the random
variable associated with insurable risk (L) and the random variable associated with
speculative risk (R) is assumed to have a joint continuous probability distribution, f(R,L).
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We will limit our attention to the situation that random variable concerning the risk of loss
frequency, h, is independently distributed from the other random variables concerning
insurable or speculative risks (R and L).3
Let the individual's expected utility of the final wealth be U(a,b) where:
U(a,b) = E[u(Y)]
= (1-9) J(L=0,00)/(R=0,00) ¥(YQ) f(R,L) dRdL
+q/ (L=0,°°)I(R=0,°°) u(Yp) f(R,L) dRdL,
or equivalently,

U(a,b) = (1-Q)E[u(Y®)] + qE[u(Y )]

We assume that u'>0, u"<0, then U is concave due to the concavity of u. The first order
conditions are given by:

D1U@b) = 5 Elu(Y)]
= (1-q) | J w(YQ)(R-Rg) f(R,L) dRdL + q [ [ u'(Y)(R-R¢) f(R,L) dRL
= (1-Q)E[u'(Y)(R-R)] + qEfu'(Y)(R-Rf)] =0, (2.2)
)
DU(a,b) = 35 E[u(Y)]
=- (1-q) [ [ w(YQ)p'(b)R¢ fR L) dRAL
-qJfu(Y1)(@'(®RsL) f(R,L) dRL

= -(1-Q)p'(D)RFE['(YQ)] + qE[u'(Y)(-p'(B)Rf+L)] = O, (2.3)

3This assumption relies on Witt (1973b). He showed that mean loss frequencies and mean loss severities
for classes of risks were not correlated by analyzing some empirical classification data for automobile
liability insurance.
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where DjU(a,b) denote the partial derivative of U with respect to ith argument. The second-

order condition for an interior maximum requires that

[xylH [x] <0, for any [x y] # [0 0],
y
where H is the Hessian such as

H = D11U DjpU
) '[Dle DzzU]’

2 2
where D{1U = E?_az E[u(Y)],D1U = ag—ag E[u(Y)], and so on. Throughout this paper, we

will assume these second order conditions are satisfied so that some optimal values, a* and
b* exist where -0 < a* < oo, and -oo < b* < oo, However, due to the property of insurance
as a contract of indemnity, the feasible choice of insurance, b**, will be restricted to 0 <
b** < 1.

The first order condition (2.2) with respect to a can be rearranged as follows:
D1U(a,b) = E(R-R¢) {(1-@)E[u'(Y)] + gE[u'(Y )]}
+ (1-9)Covu'(Yg);R] + qCov[u'(Y1);R] =0,

or equivalently

(1-q)Covlu'(Y();R] +q Cov[u'(Y]);R]
(1-QE[u'(Y)] + qE[u'(Y1)]

ER) = R¢ - (2.4)

where Cov[.] denotes the covariance operator. For a risk neutral individual, u'(Yq) or
u'(Y1) would be a constant so that the second term on the RHS of (2.4) should be reduced
to zero. However we assumed a strictly risk averse individual (u"<0). In this case, the
second term on the RHS of (2.4) characterizes the effect of risk aversion on the
individual's risky asset choice. A more convenient interpretation can be provided using the
concept of risk premium. Let © denote the risk premium which is implicitly defined by the
relation u(E(Y)-m)=E[u(Y)], then & is a function of both decision variables, a and b. First-
order condition for maximizing utility of the certainty equivalent of final wealth can be
derived by taking partial derivative of u[E(Y)-n(a,b)] with respect to a as follows:
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d '

55 WECY)-1] = v (E(Y)-T)ER-R-Ta] =0, 2.5)
where 1, is the marginal risk premium, i.e., the rate of change of ® with respect to a (=
o1/0a). It is evident from (2.4) and (2.5) that

_ (1-q)Cov[u'(Yq)R] + qCov[u'(Y1);R]
Ta = (T-QE[(Yo) + qE[w (Y]

(2.6)

Equation (2.6) shows that the risk averse individual will require a risk premium for his
risky investment. However, risk aversion (u"<0) is not sufficient to sign the marginal risk
premium in (2.6). The sign and size of the marginal risk premium depend on the stochastic
interdependence between insurable and investment risks.

At this stage, we will derive one important assumption which will be maintained

throughout the paper. For the given insurance coverage (0<b<1), the individual will buy a
positive amount of risky assets if D1U(0,b) > 0. When a =0, Yo = [W-p(b)IRf, Y| = [W-
p(b)IR¢-(1-b)L, and the optimal condition (2.2) may be reduced to

D1U(0,b) = E(R-Ry) {(1-QE[u'(Y()] + qE[u'(Y D]}
+q Cov[u'(Y1);R]. 2.7

The sign of Cov[u'(Y);R] cannot be determined unambiguously. For a special case where

the insurable and investment risks are uncorrelated in the sense that E(LIR)=E(L) for all R,
one obtains D1U(0,b) > 0 if and only if E(R)>R¢ since Cov{u'(Y1);R]=0. In this case,
E(R)>R¢ will be a necessary and sufficient condition for purchasing a certain amount of the
risky asset. It may be noted that the condition E(R)>R¢ is equivalent to the boundary

condition for positive investment in risky asset derived by Arrow (1963) where an
individual's problem is to make an optimal choice between risky and riskfree assets without
considering the property-liability risk. Throughout this paper, the assumption that E(R)>R¢
will be maintained. However, it should be emphasized that E(R)>R¢ will not quarantee a>0

in the present model because insurable risk is possibly correlated with speculative risks.

The first order condition (2.3) for optimal insurance can be rewritten as
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P'(b)Rf {(1-QE[u'(YQ)] + qE[w'(Y )]} = qE[u'(Y)L]. (2.8)

To interpret this condition, note that, for a coinsurance contract p'(b) can be considered as a
marginal cost of increasing unit coinsurance coverage, and (1-q)E[u'(Y)]+qE[u'(Y1)] is
the marginal expected utility of the final wealth at the end of the period (that is,
JE[u(Y)]/AY = (1-QE[u'(Y)] + gE[u'(Y)])- Hence, the LHS of (2.8) is the unit cost of
the insurance premium for additional coverage in terms of expected utility at the end of the
period. On the right-hand side of (2.8), since L can be seen as a marginal indemnification
of increasing unit coverage for a coinsurance contract, the RHS of (2.8) represents the
marginal increase in expected utility for additional unit coverage at the end of the period.
Thus, the condition (2.8) has a marginal benefit and cost interpretation of buying
insurance.

Alternatively, (2.8) can be expressed as

= L. q E[u'(Y1)L)
PO =R T-QER(YQ)] + BlU (Y] -

2.9)

Equation (2.9) reflects a fundamental property of the insurance premium. In equilibrium,
the premium will be the present value of the cash equivalent of the loss indemnification.

For a more convenient interpretation of (2.9), the actuarial value and the risk premium can
be separated from the equilibrium premium concept in (2.9). By letting wp, denote the

marginal risk premium with respect to b (that is, np=0n/db), equation (2.9) can be

rewritten as
p(b) = Rif [GEL) - 7, 2.10)
where
_ qU-QBML)(EL(Y DI-Elw'(Y)D) + gCov[u'(Y L] -
o= (1-Q) E[u (Y()] + q E[w (Y )] (2.11)

For a risk neutral individual, u'(Y() or u'(Y1) is constant so the numerator of (2.11) will

be equal to zero. The required premium for a risk neutral individual should be equal to the
present value of expected loss indemnification. Thus, ny, characterizes the effect of

individual's risk aversion on the equilibrium premium concept. The risk averse individual



Demand for Insurance With Investment Opportunities 235

will select his coinsurance level so that his marginal coinsurance premium, p'(b), equals the
present value of his expected marginal losses plus the negative marginal risk premium for
his insurance contract. However, the negative marginal risk premium, -7y, cannot be

signed apriori given risk aversion (u"<0). For a special case where the insurable risk is not
correlated with the investment risk (E(LIR)=E(L) for all R), one obtains -, > 0, which
allows for positive premium loading in the insurance premium. This will be the standard
result in the traditional one source of risk model. However, more generally, in the present
model, the sign and size of insurance premium loading that the individual is willing to pay
in addition to the present value of the expected loss indemnification depend critically on the
stochastic relationship between insurable and investment risks. Thus the investment
decision (that is, the sign and size of a) plays an essential role in considering the
equilibrium premium. In general, it will be impossible to separate both decisions without
further critical restrictions because of the interactions between investment and insurance
decisions. In the next section, the importance of simultaneous investment decision in
purchasing insurance coverage be demonstrated in more detail.

Before discussing further, at this point it may be helpful to clarify the notion of
"fair" premium, which will be frequently used later. By assuming proportional loading in
the premium, if the total premium for full insurance coverage is denoted P, (that is, P =
p(1)), then p(b) = bP and p'(b) = P. From (2.10) it was shown that P = (1/R¢)qE(L) is the
required premium for full coverage for a risk neutral individual. From now on by assuming
a risk neutral insurer in a monopolistically competitive insurance industry,* the insurance
premium will be defined as the present value of expected indemnification amount plus the
proportional loading, that is,

p(b) = bP = (141) 1—{; b qE(L),

or

P =p(1) = (14X) ﬁl? qE(L), where A 2 0. 2.12)

4See Witt (1973a) for an explanation of why monopolisitc insurer provides a reasonable description of the
nature of competition in property-casualty insurance lines.
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In the remainder of this paper, following the premium schedule (2.12), the insurance
premium will be defined as (actuarially) "fair" if A=0, or "unfair” if A>0 (that is, the
premium is said to be fair if P = (1/Rf)qE(L), or unfair if P > (1/Rf)qE(L)).5

III. The Roie of Investment in Risk Management

Risky assets can play a positive role in hedging insurable risk along with the
insurance contract. The next proposition shows that for the given stochastic conditions, it
will never be optimal for the individual exposed to property-liability risks to share his risks
only with insurer without investing in a risky asset. The conditions specified on the joint
distribution function include all independence and positive interdependence cases, and
characterize the extent of negative interdependence. The proposition is an application of the
Diversification Theorem in MacMinn (1984) to the present insurance model.

Proposition 1.
Assume that E(R)>R¢ and P>(1/R)qE(L). Then 2a* > 0, if

[PRf-qE(L)] E(RIL) + [E(R)-RflqL
is increasing in L.

Proof: First, it is shown that without holding a risky asset, only partial coverage is optimal.
That is, if a=0, then 0 < b°® < 1, where b° denote the optimal amount of insurance without
risky asset in the individual's portfolio. This follows if we evaluate DoU(0,1). Note that if

(ab) = (0,1), then Yo = Y1 = Y = (W-P)R¢ and

DoU©,1) = (1-) uw'(Y) J[ (-PRg) f(R,L) dRdL + q u'(Y) [ f (-PRg+L) f(R,L) dRAL

u'(Y) [-PRf+qE(L)]

<0,

S*Fair" or "Unfair" has no moral implications. It is merely used to note that a loading is included in the
premium in practice to cover transaction costs associated with the insurance mechanism.
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if and only if P>(1/Rf)qE(L). Next, consider the investment and insurance choice such that
(a,b) = (0,b°) where 0<b°<1. Note that if (a,b) = (0,b°), then Yo = (W-bP)Rf and Y| =
(W-b°P)R¢ - (1-b°)L. Let the direction v = (PRg-qE(L),E(R)-R¢), and let D, U(a,b) denote
the partial derivative of U in the direction v. Now, it is shown that D, U(0,b°) > 0, which

suffices to show a* > 0 due to the concavity of U(a,b). To show this, let f(R,.L) =
g1(RIL)f2(L) where f7 is the marginal density of L. and g7 is the conditional density of R.
Then by noting that u'(Yy) is an increasing function of L under risk aversion (u"<0), one

obtains

D,U(0,b)

[PR{-qE(L)] ((1-9) J [ u'(YQ)(R-Rp) f(R,L) dRAL +q f J w'(Y)(R-Rp) f(R,L) dRAL}
+ [E(R)-R¢] {(1-q) f [ w'(Y0)(-PRg) f(R,L) dRAL + q | J u(Y1)(-PR¢+L) f(R,L) dRdL}

[PRe-qEWL)H (1-@)u'(Yo)f (R-RpE(R,L)dRAL+qfu'(Y DIJ (R-Rp)g1 (RIL)AR] f(L)dL)

HER)-Re{ (1-Qu'(Yo)(-PRAIf £(R,L)dRAL+q] u'(Y1)(-PRp+L)fo(L)dL | g1 (RIL)AR )

[PR-gE(L)] {(1-Qu'(YQIE(R)-R¢] + qE(u'(Y D[E(RIL)-R¢])}

+ [ER)-Rf] {(1-qu'(Y)(-PRf) + qE[u'(Y1)(-PRf+L)]

- q (1-q) [E(R)-Rf] w'(Y0) E(L) + q [PRf-qE(L)} E{u'(Y)[E(RIL)-Rf]}

+q [ER)-Rg Efu(Y)(-PRg+L)]

\%

- q (1-@) [ER)-Rf] E[u'(Y1)L] + q [PRf-qE(L)] E{w'(Y D[E(RIL)-R{]}

+q [ER)-Rf] E[u'(Y 1)(-PRf+L)]

q [ER)-Rf] E[u'(Y1)(-PRf+L - (I-@)L)]+ q [PR-gE(L)] E{u'(Y DIERIL)-Rf]}

q E(u'(Y1) {[PRr-gE(L)IIERIL)-R¢]-[E(R)-Rf][PR¢-gL1})

q E{u'(Y D1 {IPRf-qE(L)I(E(R)-Re]-[E(R)-ReI[PR¢-qE(L)])
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+q Cov{u'(Yy); [PR-qE(L)IERIL)-RfJ-ER)-Rf][PRg-qL]}
= q Cov{u'(Y1); [PRf-qE(L)JE(RIL) + [E(R)-R¢lqL]}
> 0,

if [PRg-qE(L)JE(RIL) + [E(R)-R¢]qL is increasing in L. The first inequality follows by
noting that

Yo>Y)
=
-u'(Yg) > -u'(Yq)
[
(YL > -u'(Y{)L
=
-w(YQ) f JLER L) dRAL > - § f u'(Y1)LE(R,L) dRdL
~

-u'(YQ)EL) > -E[u'(Y)L]. Q. E.D.

Proposition 1 is illustrated graphically in Figure 1. The expected utility U(0,b°)
where 0<b°<1 can be always improved if the investment and insurance choice (0,b%) moves
into the direction v = (PRg-qE(L),E(R)-R¢) for the given stochastic conditions. The
proposition holds if R and L are stochastically independent (that is, E(RIL) is constant), or
R and L are positively interdependent (that is, E(RIL) is increasing in L).6 It may be
interesting to note that, if positive interdependence exist between R and L, speculative risk
can work as a natural hedge to insurable risk, and so the individual is initially willing to
add a certain amount of the risky asset to his portfolio. More importantly, the proposition
also holds if E(RIL) is decreasing in L (that is, negatively interdependent cases) at a rate
less than q[E(R)-R¢]/[PR¢-qE(L)]. The conditions are also characterized by expected net
gain of risky investment (E(R)-Rf) and net expected cost of insurance contract (that is,
premium loadings such that P-(1/Rg)qE(L)). Thus, the proposition reflects that the relative

61t should be noted that E(RIL) increasing or decreasing in L implies positive or negative correlation

between R and L, respectively, since Cov[E(RIL);L] = Cov(R;L). For a formal proof of this claim, see
Brumelle (1974)



Demand for Insurance With Investment Opportunities 239

costs of insurance and investment compete with each other as a means of improving his
expected utility or reducing the dispersion of the final wealth, since insurance contracts can
be made costly.

coinsurance rate, b

/v=(PRf-qE(L)£(R)-Rf)
0.p°)
dollar amount invested

o) in risky asset, a

Figure 1. If [PRpgE(L)JE(RIL)+[E(R)-R(JqL is increasing in L, then D, U(0,b")>0

where (¢b°<1, which suffices for a*>0 due to the concavity of U (see Proposition 1).
This can be interpreted with the dispersion of final wealth distribution. That is, moving
in direction v guarantees a reduction in the dispersion of final wealth, DgVary(0,b")<0,

with constant mean final wealth (sece Corollary 1).

An intuitive interpretation of Proposition 1 can be given in terms of the
dispersion of final wealth. To see this, let Y(0,b") be random variable denoting individual's
final wealth under optimal insurance coverage without holding risky asset such that Y(0,b")
= (W-bP)R¢-h(1-b°)L where 0<b°<1. Next, let Y(a,b) = (W-bP)Rg+a(R-R¢)-h(1-b)L, and
this investment and insurance choice of Y(a,b) is assumed to obtain by moving from the
investment and insurance choice of Y(0,b") in the direction (PR¢-gE(L),E(R)-R¢). Note that
in this case the individual's expected final wealth remains constant, that is E[Y(0,b")] =
E[Y(a,b)], but higher moments of final wealth distribution are changed. Now, Y(a,b) can
be regarded as less risky than Y(0,b%) in the Rothschild-Stiglitz (1970) notion since
E[Y(0,b*)] = E[Y(a,b)] and U(0,b°) < U(a,b). These conditions imply that Y(0,b°) has
more dispersion than Y(a,b) (see Figure 1). This implication is more formally shown in the
following corollary.

Corollary 1.
Assume that P>(1/Rf)qE(L), and E(R)>R¢. Then, the individual under optimal insurance

coverage (0<b°<1) without holding risky asset can always obtain a final wealth distribution
with less dispersion by positively investing in risky asset if
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Proposition 1 and Corollary 1 explicitly shows that a risky asset can play a
significant role in risk management. The role of investment in our model is similar to
"homemade" insurance, which represents the protection provided by marketable assets
when the returns of marketable assets are stochastically correlated with insurable risks
(Mayers and Smith (1983)). However, our resuits are somewhat different from homemade
insurance in that adding speculative risk may affect the risk of individual's whole portfolio
and the insurance coverage even when investment and insurable risks are independently
distributed of each other. In the present model, for the independent case, the individual
should retain certain positive amount of speculative risk if and only if E(R)>R¢ and should
adjust the amount of insurance against insurable risk according to the interaction between

the two decisions.”
IV. Separation

Mayers and Smith (1983) were concerned with the separation question in a
mean-variance framework, and found that independence between insurable risk and other
risks in the portfolio played a pivotal role for separation. However, as shown in the
previous section, the investment decision is generally not irrelevant in determining optimal
value of coinsurance rate without a further critical restriction even if insurable and
speculative risks are independently distributed. Instead, it will be shown that given CARA
the individual's insurance decision is completely separated from other portfolio decisions
even when insurable and speculative risks are stochastically interdependent.

Proposition 2.
If the utility function exhibits CARA, then the insurance decision is independent of the

investment decision.

Proof: As shown by Pratt (1964), the utility function of a risk averter with constant

absolute risk aversion is given by u(W) = - exp(-cW}, where ¢ > 0. For the insurance
decision to be irrelevant to risky investment decisions, the optimal condition DU(a,b) in

THong (1992) presented an example which more formally showed how the insurance coverage could change
depends on the characierization of risk aversion. Under the independence assumption, if risky investment is
introduced to the opportunity set of the individual who initially holds optimal insurance coverage, the
individual will always buy certain positive amount of risky asset, and simultaneously, he/she will reduce
insurance coverage under DARA, hold it unchanged under CARA or increase it under IARA.
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[PR¢-gE(L)] E(RIL) + [E(R)-RflqL
is increasing in L.
Proof: Define VarY(a,b) to denote the variance of final wealth, Y, then
Vary(a,b) = a2Var(R) - 2aq(1-b)Cov(R;L) + q2(1-b)2Var(L),

where Var(.) is the variance operator. Differentiating VarY(a,b) in the direction v = (PR¢-
qEL).E(R)-Rf) and evaluating at (0,b°) yields

Dy Vary(0,6°) = -2q(1-°) {[PRf-qE(L)ICov(R;L) + [E(R)-RelqVar(L))}. (3.1

The sign of Dy Vary/(0,b°) will be negative if the sign of the bracketed term on the RHS of
(3.1) is positive, and this is the case if [PRg-qE(L)] E(RIL) + [E(R)-R¢lqL is increasing in -

L, since
[PR{-qE(L))Cov(R;L) + [E(R)-RelqVar(L)
= [PReqEM)] ] [L-EQW)IR-E(R)] f(R,L) dLAR
+ [E(R)-R¢lq | J [L-E(L))2 f(R,L) dLdR
= [PRe-qEML)] J [(R-E(R)] g1(RIL) dR f [L-E(L)] fa(L) dL
+ [ER)-Relq [/ [L-EWL)12 f2(L) dL
= JIL-EW)] {[PRGEMIERIL)-ER)+[ER)-Relq [L-EQL)]) f2(L) dL
= E[L-EQL)] E([PR{-gEW)I[ERIL)-E®)] + [ER)-R¢] q [L-EWL)]}
+ Cov{L; [PR-qELIE(RIL)-E(R)] + [ER)-Rflq[L-E(L)])
= Cov{L; [PRF-qE(L)JERIL+E(R)-RflqL])

> 0. Q.ED.
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(2.3) would have to be identically zero for all possible values of a, and CARA suffices to
show this separation. To see this, DoU(a,b) can be rewritten as

D3U(a,b) = -PR¢{(1-Q)E[u'(Y)] + qE[u'(Y )]} + qE[u'(Y)L] 4.1)

Let S=-(1-b)L, then Y1 = Yg+S. Now, E[u'(Y1)L] in the second term on the RHS of (4.1)

can be rewritten as follows:
E[u'(YL] = EL) E[u'(Y1)] + q Cov[u'(Y1);L]

= E(LE[u'(Y)] + E{(u'(Y)-E[u'(YDDIL-EL)])

E(L) f c exp(-cY() g1(RIL)AR | ¢ exp(-cS) f(L)dL

O

+ -Cl- fe exp(-cY()g1(RIL)dR [ ¢ exp(-cS)L-E(L))f2(L)dL

E[u'(YQ)IL) (E(L)E[u'(S)] + E{[L-E(L)]u'(S)}),

(R

or equivalently

q Elu'(Y1)L] = é— q E[u'(Yg)iL] E[Lu'(S)]. 4.2)

Again, employing similar procedure, the first term on the RHS of (4.1) can be also

specified as follows:

-PR¢{(1-q) E[u'(YQ)] + q E[u'(Y)]} = -PRg E[u'(YQ)IL] {(1-q) + % q E[u'S)]}.  (4.3)

Finally, substituting (4.2) and (4.3) into (4.1) gives

DpU(a,b) =E[u'(Yp)IL] {-PRf% qE[Lu'(S)] + (1-q) + (l: q E[u'(S)1}

= -PRf% q E[Lu'(-(1-b)L)] + (1-q) + é q E[u'(-(1-b)L)]
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= 0.

Hence, the optimal condition DpU(a,b) = 0 is unaffected by the choice of a, and so

separation holds. Q.ED.

We claim that this separation condition is especially important in the sense that the optimal
insurance decision can be made independently from all other portfolio decisions even when
insurable and other uninsurable risks are stochastically correlated with each other when
CARA exists. Thus, many of the aspects on the optimal amount of insurance derived under
the traditional one source of risk model may possibly remain valid, if CARA is assumed.8

V. Bernoulli Principle

In this section, the well-known Bernoulli Principle will be considered. The
standard result in the traditional one source of insurable risk model is that all rational risk
averse individuals will choose full insurance with fair premium [Arrow (1963, 1974),
Smith (1968), Mossin (1968), and Ehrlich and Becker (1972), Schlesinger (1981)].
Recently, Doherty and Schlesinger (1983b) examines the choice of deductible insurance in
the presence of uninsurable background risk. They derived some more general results
showing that the Bernoulli principle holds if random initial wealth is independent of the
insurable loss, or if the two random variables have a bivariate normal distribution with
negative correlation. The following proposition is an extension of the results obtained by
Doherty and Schlesinger (1983b). The proposition shows that even if the insurable and
speculative risks do not have a joint normal distribution but the negative interdependence
exists, the Bernoulli principle still holds. In addition, it also demonstrates that if positive
interdependence exists then the Bernoulli principle is violated.

Proposition 3.

Assume that P=(1/R¢)qE(L) and E(R)>R¢. Then,
(1) b=1if E(LIR) is constant for R,
(2) b=1if E(LIR)is decreasing in R, or
(3) 0<b < 1if E(LIR)is increasing in R,

8Freifelder (1979) has developed a theoretical insurance ratemaking model based on an assumption of
CARA.
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Proof: Let a° denote the optimal value of a when b = 1. First, it will be shown that, for the
given full insurance (b=1), if E(R)>R¢ the individual will optimally hold positive amount of

risky asset (a*>0) for all possible stochasitc relationship between R and L. It follows if we
- evaluate D{U(0,1). If P = (1/Rp)qE(L), then Yo =Y =Y = W-PR¢ and so

D{U(,1) = u'(Y) [E(R)-R¢] >0,

which suffices to show that a® > 0. Next, the sign of DaU(a’,1) will be evaluated under
different stochastic conditions. Let f(R,L) = g2(LIR)f1(R) where f1 is the marginal density
of R and g7 is the conditional density of L. If (a,b) = (a’,1) and P = (1/Rf)qE(L), then Y
=Y1 =Y = (W-PRp)+a’(R-R¢) and

DyU@'1) = (1-9) Ju(Y)(-PRp) f(R,L) dRAL + qf[u'(Y)(-PRp+L) f(R,L) dRAL
=[[u'(Y)(-PRp+qL) f(R,L) dRAL
= [u'(Y) J(-PRp+qL) gz(LlR)dL] f1(R) dR}
= [ w(V)[-PRF+QE(LIR)] f1(R) dR
= (E[u'(Y)] [-PRe+qE(L)] + Cov[u'(Y),qE(LIR)]}
= q Cov[u'(Y);E(LIR)].

Thus, if E(LIR) is constant, then DaU(a’,1) = 0, which implies that (a°,1) is the interior
optimal choice. If E(LIR) is decreasing in R, then DoU(a’,1) > 0. In this case, if we denote
b* to the optimal value of b for maximizing U(a,b) without bound of b (that is, -o0 < b* <
=), then 1 < b* due to the concavity of U. Therefore, the full coverage insurance portfolio
choice (a°,1) is still optimal, since overinsurance is not permitted in this model. If E(LIR) is
increasing in R, then DoU(a®,1) < 0, which suffices to show that b* < 1 due to the
concavity of U. In this case, only partial coverage insurance (0<b<1) is optimal and so a°
may no longer be an optimal investment choice. Q.E.D.

Part (2) of Proposition 3, of course, corresponds to the special case considered by Doherty
and Schlesinger (1983b) where a bivariate normal distribution with negative correlation
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was employed.9 This can be easily shown by noting that, if R and L have a joint normal
distribution, then

Std(L)

E(LIR) = E(L) +p 55(R)

[R-E(R)],

where p is the correlation coefficient and Std(.) is the standard deviation operator.

Proposition 3 thus generalizes the result of Doherty and Schlesinger (1983b).

(a'.1)

Figure 2. Given fair premium, if E(LIR)is increasing in R, then -DoU(a",1)>0
where a*>0. This suffices for b*<1 due to the concavity of U (see Proposition 3).
This is because - the final wealth distribution loses weights in both tails, that is
-D9P(Y<y)<0 and -DyP(Y>y)<0 if evaluated at (a°,1) without changing the mean

final wealth (see Corollay 3).

If positive interdependence exist between insurable and investment risks, then
the insurable risk provides a natural hedge to speculative risk held in the optimal portfolio
with full insurance. Thus, the individual is willing to bear a certain amount of insurable risk
in the portfolio, which results in partial insurance coverage. As a consequence, the
Bernoulli principle no longer holds in this case. This implication can be more formally
shown if riskiness of final wealth is defined by the Rothschild and Stiglitz (1970) sense
(see Figure 2).

Notice that if the costs of insurance are actuarially fair (P=(1/Rg)qE(L)), then
for the given risky investment, a(>0), the expected final wealth,

9 See Proposition 3 on pp. 561-563 of Doherty and Schlesinger (1983b).
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E(Y) = WR¢ + a[E(R)-R¢] - GE(L),

remains constant regardless of all insurance decisions. However, the riskiness of the final
wealth distribution will be affected by changing the insurance decision. To see this, let
Y(a’,1) be random variable denoting individual's final wealth with full insurance coverage,
that is, Y(a°,1) = (W-P)Rg+a"(R-Rg) where a*>0. Next, let Y(a’,b) be random variable
denoting individual's final wealth with partial insurance coverage, thatis, Y(a’,b) = WR¢
+ a’(R-Rg) - bPR¢ - h(1-b)L, where 0<b<1. Thus, Y(a’,b) is obtained by moving from full
coverage to partial coverage insurance without changing risky investment choice. For any
a*>0, if E(RIL) is increasing in L, Y(a°,1) is more risky than Y(a°,b) in the Rothschild-
Stiglitz sense since E[Y(a’,b)] = E[Y(a",1)] and U(a’,b)>U(a",1). These conditions are
equivalent to Y(a®,1) being a mean preserving spread of Y(a’,b), or Y(a°,1) having more
weight in the tails of its distribution than Y(a°,b). Therefore, the proposition shows that if
Cov(RIL) is increasing in L, it is always possible to reduce the riskiness of final wealth
distribution by moving from full coverage to partial coverage.

We formalize this claim in the following corollary. It may be noted that a
reduction in the riskiness of final wealth in the following corollary implies a reduction in
variance of final wealth.

Corollary 3
Assume that P=(1/Rg)qE(L), and E(R)>R¢. Then, the individual holding full insurance

(b=1) can always obtain a final wealth distribution with less weight in its tails by reducing
the insurance amount to partial coverage (0<b<1) if E(LIR) is increasing in R.

Proof: First, note that if E(LIR) is increasing in R, there exists a fixed number R* such that
EL) § E(LIR) as R % R*. By noting that the random variable h in (2.1) has the value of

zero with the probability 1-q or one with the probability q, P(Y < y) can be written as

P(Y<y) = (I-9P(Yo<y) +qP(Y] <y)

(1-q) P[a(R-Rg)-bPR¢ < y°] + q P[a(R-R¢)-bPR¢ -(1-b)L < y°],

]

or equivalently,
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P(Y £y) = (1-Q) JL.=0,0)(R=0,k0(a, b)) f(R.L) dRdL

+qJ(.20,00)(R=0,k1(a,b)) fR.L) dRL,

where
y° =y-WRg,
°+bPR
@b =t——T+Rg, (5.1)

°+bPR+(1-b)L
y £+(1-b) +Rg

a 5.2)

kl@a,b) =

Now it will be shown that the final wealth distribution P(Y <y) loses weight in the left tail
when the amount of insurance is reduced from full coverage to partial coverage. This
follows if we evaluate

- SEPOY $3) =-(1-0) 35 PY0 ) - 3pP(Y1 £3) <0, 53)

at (a,b) = (a°,1) where a*>0. Here, the negative sign on the LHS of (5.3) implies a shift to
partial coverage from full coverage. By direct calculation, 0P(Y(y < y)/db in (5.3) can be
written by
9 bYasy) =- 2 (IRt k0¢a bR IR)dL
-55P(Y0=y) = - 55 UR=0,k0(a,b))f1 R)(1.=0,00)g2(LIR)AL] dR }
= - Dok0(a,b) £1(k0(a,b)), (5:4)
where Dok is the partial derivative of k0(a,b) with respect to second argument, b, that i,

PR
Dok0(a,b) =—L. (5.5)

Evaluating the derivatives in (5.4) and (5.5) at (a,b) = (a°,1) yields

PR
- P(Y0 S y) = (D) F160a, 1)) (5.6)
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Let y° be such that
Y +PRf+ Rf=R <R*, 5.7
then kO¢a*,1)=R. By substituting (5.7) into (5.6), -0P(Y(<y)/db can be reduced to
0 p 1 _
- 35 P(YO Sy) = - v PR¢ f1(R). (5.8)
Again, -0P(Y < y)/db) in (5.3) can be written by
9 pey; < .9y J p)fR,L) dLdR
“5 P(Y1=y) =- 35 U(L=0,00)(R=0,k 1 (a,b))f(R.L) }
=- [ Dokl(a,b) f(k1(a,b),L) dL, (5.9)

where Dzk1 is the partial derivative of k2(a,b) with respect to second argument, b, that is,

PR L
Dokl(ab) =—= (5.10)
Evaluating the derivatives in (5.9) and (5.10) at (a,b) = (a°,1) yields
3 PREL. 1.
- 55 P(Y1 sy =- [ () £kl (@, 1),L) dL. (5.11)

By noting that k1(a®,1)=(y°+PRg)/a° + R¢ = R, -0P(Y(y<y)/ob in (5.11) can be rewritten as
9 p(y; <y) =- 5[ PREL) (R.L) dL
- 35 PY1<y) =- I @ReL) FR L)
=- LI PReL) gxUR) dL £1®)
-. ;i‘ [PRFELR] f1(R). (5.12)

By substituting (5.8) and (5.12) into (5,3), one obtains
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-2 Py <y)=- (1-9) S P(Yo S ) - a5 PCY1 <)

1
= - 7 f1(R) [PRe-qE(LIR)]
1
=- = f1(R) [EL)-EQLR)]
<0,
since
y°+PR¢ "
PORRRS Rf=R <R
yields E(L) > E(LIR).
Following the same manners, one can show that the final wealth probability
distribution loses weight in the right tail, that is, -dP(Y>y)/db < 0. Q.E.D.

The proposition and corollary clearly shows that Bernoulli principle should be
reexamined within the context of the insured's whole portfolio. The method of proof for
the robustness of the Bernoulli principle (that is, b=1) when dE(LIR)/dR < 0 is almost
equivalent to that of the preceding proof, so is not duplicated here. In the next section, the
Bernoulli criterion is reexamined with more realistic assumption of positive premium
loadings.

VI. Full Insurance With a Positive Premium Loading

In the classic theory of the demand for insurance, it would be never optimal for
the insured to take full insurance if the insurance premium includes any positive loading
factor which is proportionately related to the actuarial value of the policy [Arrow (1964,
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1974), Smith (1968), Mossin (1968)]. However, in a real world insurance market it can be
frequently observed that the individuals buy full insurance coverage. The results of our
model help to explain this phenomenon. In particular, the following proposition specifies
sufficient conditions for partial insurance coverage, which includes non-negative
interdependence and characterizes the negative interdependence. More importantly, the
proposition also characterizes the extent of negative interdependence which is needed for
full insurance.

Proposition 4.
Assume that E(R)>R¢ and P>(1/Rg)qE(L). Then,

1) 0<b<1, if -[E(R)-ReJQE(LIR)-[PR¢-qE(L)IR is decreasing in R,
Q) b=1, if -[E(R)-Rf]qE(LIR)-[PR¢-qE(L)IR is non-decreasing in R.

Proof: The method of proof is similar to those of Proposition 1 and 3, so it is relegated to
the Appendix.

The possibility for partial or full coverage as an optimal choice depends on the
net expected gain of the risky investment, the loading factor, and the extent of
interdependence between the speculative and insurable risks. Partial coverage (0<b<1) with
aproportionally loaded premium (P>(1/Rf)gE(L)) is consistent with the Bernoulli criterion,
and the Bernoulli criterion holds if E(LIR) is either a constant (the independcnée case) or an
increasing function of L (positive interdependence). It also holds if E(LIR) is decreasing
with R (negative interdependence) at a rate greater than {PRe-qE(L)I/QIE(R)-R¢]. However,
full coverage (b=1) with a loaded premium contradicts the Bernoulli criterion. This case
results the case if E(LIR) is decreasing with R at a rate smaller than [PR-qE(L))/q[E(R)-
Rg¢]. The proposition is graphically illustrated in Figure 3.
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Figure 3. Given an "unfair” or loaded premium, if -[E(R)-R{]qE(LIR)-[PRp-qE(L)]R is decreasing
in R, then D, U(a*,1)>0 where a°>0, which suffices for b*<1 due to the concavity of U (see

Proposition 4). This can be interpreted by using the notion of a mean preserving spread. Moving
in direction v generates a final wealth distribution with less weights in both tails, that is
DyP(Y<y)<0 and D,P(Y>y)<0 if evaluated at (a°,1) while maintaining constant mean wealth (sec

Corollary 4).

Again, as illustrated in Figure 3, the implication of the proposition can be more
intuitively explained by the riskiness of final wealth developed by Rothschild and Stiglitz
(1970). The expected final wealth,

E(Y) = WR¢ + a[E(R)-Rg] - bPR¢ - q (1-b)E(L),

does not change when the portfolio choice moves in the direction (-PRg+qE(L),R¢-E(R)).
Let Y(a°,1) where a">0 and Y(a,b) be random variables denoting individual's final wealth
such that (a,b) is obtained by moving from (a’,1) in the direction (-PRf+qE(L),R¢-E(R)).
Now, if -(1/Rf[E(R)-RfIqE(LIR)-[P-(1/R{)qE(L)]R is decreasing in R, then Y(a’,1) will
be a mean preserving spread of Y(a,b) since E[Y(a",1)] = E[Y(a,b)] and U(a",1) < U(a,b).
Or equivalently Y(a’,1) has more weight in the tails of its distribution than Y(a,b). The
preceding implication for partial insurance is demonstrated directly in the following
corollary.

Corollary 4
Assume that P>(1/Rf)qE(L) and E(R)>R¢. Then, the individual holding full insurance

(b=1) can always obtain a final wealth distribution with less weight in its tails by reducing
the insurance amount to partial coverage (0<b<1) if

-[E(R)-R¢] gE(LIR) - [PR-qE(L)IR
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is decreasing in R.
Proof: Since the proof is quite long and complicated, we relegate it to the Appendix.

Similarly, the reason why full insurance may be optimal under a proportionaily
loaded premium can be explained in the same lines described above. It has been argued by
Borch (1983, 1986) and Schiesinger (1983) that no insurance or full insurance will be the
optimal solution to the individual's problem if the premium is given by P(L) = EL) + C,
where C is a fixed amount charged to cover the administrative expenses of the insurer. In
that case, either full coverage or no coverage at all is purchased depending upon the
magnitude of the fixed cost charge. However, as noticed by Witt (1974), the risk charge of
an insurance company is usually related to the mean pure premium following the formula
(2.12) rather than the variability in the pure premium distribution. This pricing method is
consistent with the notion of a risk-neutral monopolistic insurer assumed in this model,
since the risk neutral insurance company is interested in only expected loss payment. The
traditional results under a proportionally loaded premium seem to be contradicted by
observations in real-world insurance markets, where individuals frequently buy full
coverage insurance. This incomplete traditional result can be improved within our model.
Full insurance proves to be feasible even when the insurance premium includes a
proportional loading. The proposition and corollary are not simply a way to hold optimal
insurance coverage. Rather, they demonstrate the key role of the risky investment in risk
management. Again, the importance of simultaneous insurance and investment decisions

should be emphasized because the individual will generally face a trade-off between the net
gain of a risky investment (R-R¢) and the net cost of insurance (P-(1/Rf)qL).

VII. Conclusion

- A model of the demand for insurance under two sources of uncertainty has been
presented. The distinguishing characteristics of the present model is that insurance demand,
time value of insurance premium, and demand for riskless and risky assets are
simultaneously incorporated into the expected utility framework. Based on the view of this
paper, the typical individual has two ways to control the risk, risky investment and
insurance, and so it may be no longer the case that insurance decision should be governed
only by the riskiness of insurable loss. A risky asset play a proper role in hedging insurable
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risk. Many of the earlier results obtained from one source of risk model cannot be extended
to this model without any strict qualification. The present model provides a more general
result to that of Doherty and Schlesinger (1983b), who were concerned with the
uncontrollable background risk, and Mayers and Smith (1983), who emphasize the
possibility of homemade insurance protection provided by marketable assets which are
stochastically correlated with the insurable loss. More generally, we have shown that when
investment decision is adjusted simultaneously, nearly all risky assets can play a
complementary role to that of insurance in risk management even when insurable and
speculative risks are stochastically independent each other, and more importantly, the role
of risky asset cannot be duplicated by insurance contract.
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Appendix
Proof of Proposition 4: First, it will be shown that under the given full insurance coverage
(b=1) the individual always invest positive amount of his wealth in risky assets (a°>0). To
see this, note that when (a,b) = (0,1), Yo = Y1 = Y = W-PR¢. Evaluating DU at (a,b) =
(0,1) gives

D1U(0,1) = u'(Y) ER-R) > 0,
which implies a°>0 when b = 1. Next, consider the investment and insurance choice such
that (a,b) = (a’,1) where a">0. Note that when (a,b) = (a°,1), Yo = Y1 = Y = W-PR¢ +
a"(R-Ry). Let the direction v = (-PRg+qE(L),R¢-E(R)), then one obtains D, U(a",1) > 0 if
-(E(R)-RfIGELIR)]-[PR¢-qE(L)]R is decreasing in R since
DyU(@’,1) =
[-PRe+qE(L)] {(1-q) S u'(Y)(R-Rg) f(R,L) dRdL
+qJJu'(Y)R-Rp) f(R,L) dRdL}
- [E(R)-R¢} {(1-9) [ J u'(Y)(-PR¢) f(R,L) dRAL
+qJ Ju(Y)(-PRg+L) f(R,L) dRdL)}
= [-PReEM] u'(Y)R-Rp)( f(R,L)AL) dR
- [ER)-R¢] {(1-q) Ju'(Y)(-PRp) ( f(R,L)dL) dR
+qJu(Y)(-PRg) ( f(R,L)dL) dR
+qJu(Y) fj(R) /L go(LIR)dL dR}
= [-PRpHEL)] ] u'(Y)(R-Rg) f1(R) dR

- [ER)-Rf] ] w'(Y)[-PR+E(LIR)] f1(R) dR
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-[PRe-qE(L)] (E[')IER)-Rel+ Cov[u'(Y);(R-Rg)]}

- [E(R)-R1] {E[u'(N][-PRp+E(L)]+Coviu'(Y);-PRe+qELIR)]}

Cov (u'(Y);[E(R)-Rfl[PR¢-qE(LIR)]-[PR{-qE(L)I(R-Rf)}
> 0.

Due to the concavity of U, DyU(a’,1)>0 suffices to show 0<b<1. Thus, the proof of the
first part is completed. Next, let the direction v = (PRg-qE(L),E(R)-Rg), then one obtains
DyU(a",1) 2 0 if -[E(R)-R¢IGE(LIR)]-[PR¢-gE(L)IR is non-increasing in R since

DyU@",1) =- Cov(u(YHER)-RAPRFGELR)-PRe-GEL)IR-Rp)

2 0.

D, U(a’,1)20 where v = (PR¢-qE(L),E(R)-R¢) suffices to show b=1, since U is concave

and overinsurance (b>1) is not feasible. Thus, the proof of the second part is completed.
Q.E.D.

Proof of Corollary 4: First, note that if -[E(R)-Rf]lqE(LIR)}-[PR¢-qE(L)IR is decreasing in
R, there exists a fixed number R* such that

1 1
(ER)-Rf] [P‘Equ(UR)] s [P'E.QE(L)](R’Rf)
asR % R*. Next, consider the final wealth distribution. P(Y <y) can be written as

P(Y < y) = (1-9) (L.=0,00)/(R=0,k0¢a, b)) f(R.L) dRAL

+al(1=0,00)/(R=01(a,b)) FR.L) dRAL, D

where y° =y-WRy,
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yo+bPR¢
a

kO(@a,b) =

+ Ry,

°+bPR¢+(1-b)L
y°+bPRpH( )+R

kl(ab) = .

Now it will be shown that the final wealth distribution loses weight in the left tail by
reducing to partial coverage from full insurance coverage. By direct calculation, the first
term on the RHS of (A1) can be rewritten as

DyP(Yg <y)
=Dy {(R=0,x0(a,b))f1(R) U(1.=0,00)82(LIR)AL] dR}
= (-PRp+qE(L)) D1k0(a,b) f1(k0(a,b))
+ (Rf-E(R)) D2kO(a,b) £1(k0(a,b)), (A2)

where

o
0 _y +bPRf
le (a,b) ——a-z'_y

PR
DokO(a,b) =—.
Evaluating the derivative DyP(Y(<y) in (A2) at (a,b) = (a°,1) where a°>0 yields

y°+PR¢ Ofae
DyP(Yg <y) = [PRg-qE(L)] —a:)‘z— f1(kV(@’,1))

PR¢
- [ER)-R(l —

£1(k0¢a",1)). (A3)

Let y° be such that

y°+PR¢
aﬂ

+Rg=R <R*,
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then, k0(a",1) = R. By noting that

y°+PR¢
a’

=R-Rg¢,

(A3) can be reduced to

DyP(Yq<y) =al-; {{[PRf-qE(L)I(R-R¢) - PRAE(R)-R¢l} f1(R). A4)

Similarly, the second term on the RHS of (A1) can be rewritten as
DyP(Y] <y)
= Dy {J(L=0,00)/(R=0 k! (a,b))f(R.L) dLdR}
= (-PRE+E(L)) f1.=0 0D 1k (@,b) f(k!(a,b),L)dL
+ (Rf-E(R)) Dok L(a,b) f(k1(a,b),L)dL, (AS)

where

°+bPRe+(1-b)L
Dikl(ab)=- y—jafi—)

L
Dokl(a,b) = f

Evaluating the derivative in (A5) at (a,b) = (a°,1) yields

y°+PRg, Lae
DyP(Y1 <y) = (PRe-gE(L)) J 2z ) fl@, L) dL

PR¢s-L
+ @BR-RY [ (1) k@, L) dL. (A6)

°+PR.
By noting that kl(a",l) =7 s f + R =R, DyP(Y1 £y) in (A6) can be rewritten as
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DyP(Y] <y)

1l

% (PR¢-qE(L)) | (R-Rp) f(R,L) dL - aL (E(R)-R¢) | (PR¢-L) f(R,L) dL

2 (PRe-qE(L)) (R-Rp) | SR L) dL - 2 (BR)-Rg) | (PR¢-L) g2(LIR) dL £ (R)

= {[PREEML)IR-RY-ER)-RAPREELR) | R). A7)

Substituting (A4) and (A7) into (A1) yields
DP(Y <y) =(1-q)DyP(Yg<y)+qDyP(Y]<y)
= L £1®) [(1-9) ([PR{-GEL)IR-Ry) - PRAER)-Rel)
+ {[PREGELIR-Ry) - (BR)-RPRe ELR)] )]
= S EIR(-PRFEQURIER-Re + [PRE-GELIR-R)
< 0,
since

°+PR,
I Re=R<R*

yields

[ER)R{] [P-R SELR)] > (PR gEWIR-Rp.

Following same lines described above, it can be shown that the final wealth
probability distribution loses weight in the right tail, that is, D, P(Y2y) <0, where v = (-

PRe+QE(L),Rf-E(R)). Q.E.D.
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