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EXISTENCE OF SOLUTIONS FOR SINGULAR
NONLINEAR TWO-POINT BOUNDARY VALUE
PROBLEMS

T.S. Do and H.H. Lee

Introduction

In this paper we study existence questions of solutions for the singular
nonlinear second-order boundary value problem

(p(z)y'(2))" = g(«)f(=z,y(z), p(z)y'(z)) on (0,1)
y(0) = —y(1)  lim p(z)y'(z) = —p(1)y'(1). (1)

The problem may be singular because p(0) = 0 is allowed and ¢ is not
assumed to be continuous at 0. The idea of considering such problems
was motivated by [2-4]. Our analysis consists in determining @ priori
bounds on all solutions to related one-parameter family of problems and
applying the topological transversality theorem of Granas [4], which relies
on the notion of an essential map. By a solution we shall mean a function
of class C([0,1]) N C?*((0,1)) that satisfies (1). Throughout this paper we
assume that p € C*(0,1],q € C(0,1], p,g > 0 on (0,1],¢,1/p € L'(0,1),
and f continuous on [0,1] x (—o0,00) X (—00, 00).

A Priori Bounds on y,.
We consider the family of problems

(p(z)yA(2)) = Ag(z) f(z, ya(x), p(z)y\(2)) on (0,1)
y:(0) = —3a(1),  lim p(e)yi(z) = —p(1)ya(1), (2)
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indexed by the parameter A € [0,1].

Lemma 1. Let pq be bounded and let there exist a constant M > 0 and
a differentiable function g > 0 on [M,o00) such that f(z,y,0) < 0 on
(0,1) x (—o0,—M] U [M, ) and —g(y) < f(z, y,z) fory > M. Define
G(¢) = \/—fi——i— for £ > M and G = /2 max gp 6({ Then
9(n)dn
(a) éllm G(€) > Gy, then any solution y, of (2), independently of A,

satisfies |yx(z)| <Y, z € [0,1], for a constant Y.
(b) if 1im G(E) = 0 and G(€) > Gy, then there exists an interval (&1,&2)

such that no solution of (2) has its mazimum value or absolute value of
its minimum on (£,,&;) and & < f < &,, where f is a zero greater than
M of the equation

2 [ gn)dn = (€ ~ M)g(€). (3)

Proof. If A = 0, then the unique solution is yo = 0. Henceforth we
assume A € (0,1]. Let y, be a solution for which y, has an interior
maximum yy(zo) > M at zo € (0,1). Since f(z,y,0) <0 for y > M, y,
has neither a local minimum greater than M nor an inflection point with
a horizontal tangent and a value greater than M. From the boundary
condition y,(0) = —ya(1), one end point has a nonpositive value. Thus
there exists an interval (Z,z) or (2o, &) satisfying y,(Z) = M and y,/(z)
a fixed sign there. On (%,z0), we have y,'(z) > 0 and

—Agpa(y: )y’ < (pya') pyy'.

Integration on (z,z¢) C (%, zo) and the boundedness of pq yield

!
/Qmaqu 1 2 y,\(“rj

P@) " 1 gy

From another integration on (,z¢), we obtain

G(ya(20)) < Go. (4)

In the same manner we have (4) on (zo,2). If Elim G(€) > Gy, then any

interior maximum is bounded by a constant Y. Suppose Elim G{£) =0,
Since {HI}JG({) = 0 and eﬁnﬂ;G’(E) = 00, G'(£) = 0 has at least one
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zero greater than M. Let ¢ satisly (3). Then G(£) > G, implies that
Y\(zo) does not lie between ¢; and & such that G(&) = G(&) = Go.
Since y, has no interior minimum less that —M, we now consider an
end point extremum. Suppose that a solution y, has the maximum at
z = 1or 0. If y{(1) > 0, then y, can not achieve its minumum at
z = 0 and y,(1) is less than the absolute value of intericr minimum.
Thus p(1)yy(1) = l%p(m)yi(x) = 0 for y, to achieve the maximum and

minimum at end points. Assume y,(1) > M. Then there exists a point
zgp € (0,1) such that ya(zo) = M and yi(z) > 0 on (zp,1). As in the
proof of interior maximum we arrive at the inequality G(ya(1)) < Go.
The corresponding assertion holds for the case y,(0) > M. The lemma
follows.

Lemma 2. Suppose there exists a positive constant M satisfying yf(z,vy,
0) >0 on (0,1] X (—oo,—M] U [M,00). Then for any solution y, of (2),
A €[0,1], lua(z)| £ M for z in [0,1].

Proof. 1f a solution y, of (2) has a local maximum at zo € (0,1), then
ya(zg) < M, and y, has no local minimum less than —M. Suppose y,
has the maximum and minumum at end points. As shown in the proof
of Lemma 1, ]jnép(:c)y;(x) = p(D)y\(1) = 0. If yz(1) is the maximum
greater than M, then ]jniy,\”(:c) > 0. This implies that y, is decreasing
near z = 1. Contradiction. Similarly the minimum less than —M does
not occur at z = 1. This implies that |y,(1)] = |yA(0)] < M.

A Priori Bounds on py).

Lemma 3. Let yy be a solution of (2) that satisfies |yy| < Y for some
constant Y and let f satisfy

(a) |f(z,y,2)| < kh{|z]) on [0,1] x [-Y,Y] X (=00, 00), where h(z) is a
continuous function on [0,00) and

(b) Dm hc:':)dz > /01 g(z)dz or

0 5 ‘ |
./0 h(z)dz > 2max p(x)q(z)Y if pg is bounded.

Then there ezists a constant Z such that sup|p(z)y\(z)| < Z.
(0.1)

Proof. y, is monotone or y}(zo) = 0 for some z,. Considering monotone
case first, we have on (0,1) that

(Upwdl) < 1pyd)'| < qlz)h(|pyil)-
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Multiplication by 1/A(|py%|) and integration over (0,z) C (0,1) yields

levi (=) dz 1
/(; @ S/o q(z)dz (5)

since linép(m)yf\(m) = 0. Now suppose y}, vanishes at some point zg. Then
every ¢ € [0,1] where y{ # 0 belongs to an interval (z,x0) or (o, %)
such that y) has a fixed sign there. Similarly we obtain (5) again. If pg
bounded, by multiplying |py)|/k(|py\|) instead of 1/h(|py}]) we have

/Ipyj\(TJl z g v
! ") z < 2max pqgY.

The result follows.
Existence of Solutions

We shall prove the existence of solutions of (1) separately for the cases
(a) and (b) in Lemma 1.

Theorem 1. Let there ezist constants Y and Z such that any solution y,

of (2) satisfies %aﬁclyk(m){ <Y andsuplp(z)y\(z)| < Z,0 <A < 1. Then
l (0'1)

the problem (1) has a solution.

Proof. From the differential equation itself and the continuity of f it
follows that

SN = sup \f(z,y,2)]-
[01]x[-Y¥]x[-Z,2Z]

For appropriate functions v define

— M — ! .
oo = maxfo(@)l, ol = max (Jlollo, sup [p(x)e'(2)1),

1

max (%|vnl,?§£ [(p(a)v'(2)) /a(=)]).

Il

o1l

Then we have the Banach spaces (B, || - |lo) = {v € C(0,1) : [jv][o < oo},
(Bi, [l - ) = {v € C[0,1] n C*(0,1) : [|vlls < oo}, and (B,]| - [l2) =
{v € C[0,1] N C?(0,1) : ||v|]z < co} and set a convex subset B, = {v €
By 1 v(0) = —v(1), ]_in%p(m)v'(:r:) = —p(1)v'(1)}. Define the mappings
Fy : By - B by (F\w)(z) = Af(z,v(z),p(z)v'(2)), 7 : B, — B; by
Jjv =v,and L : B, — B by (Lv)(z) = (p(z)v'(z))'/q(z). Clearly F)
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is continuous. Let Q be a bounded set in By. Then jQ is uniformly
bounded and equicontinuous and the Arzela-Ascoli theorem implies that j
is completely continuous. Now we claim that L~ exists and is continuous.
The solution v € B; of Lv = u for u € B is given uniquely by

v(z) = /:ﬁ]t q(s)u(s)dsdt
+f t)dtlf:%_%f:%]
—5/0 p(lt) /Ut q(s)u(s)dsdt.

Hence L is one to one and onto. Since ||Lv|lp < ||v||2, by the Bounded
Inverse Theorem L~ is a continuous linear operator.

Let .
V={veB;:|v|: <max(Y,Z,N)+1}.

Then V is an open subset of the convex subset §2 of the Banach space B,.
Now we define our compact homotopy Hy : V — B, by Hyv = L1 F)jv.
H) is fixed point free on dV by the construction of V. Since Hj is a
constant map and thus essential, it follows by the topological transversality
theorem that H; is essential, i.e. (1) has a solution.

Our last theorem shows that the existence of such an interval [(b)
in Lemma 1] is sufficient for us to apply the topological transversality
theorem.

Theorem 2. Let the following hypotheses hold:
(H1) There ezists an interval (&;,&;) independently of A € [0,1], such
that no solution y, of (2) has the mazimum value of |y,| on (&,&;).
(H2) For any solution of (2) satisfying |ya| < Y, & < Y < &, there
exists a constant Z such that sup|p(z)y,'(z)] < Z.
(0,1)

Then (1) has a solution.

Proof. The proof closely parallels that of Theorem 1 with replacement of
[0]l1, [|v]l2, and V' by

lofl, = max (nvno/m?up [p(2)v'(2)1/2),

ol = mas (o /¥,up [ ),

V = {veB;:olla<1+¢}
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for € small enough so that Y (1+¢€) < &. Since Z and N have the property
that sup|p(z)v’(z)| < Z and sup|(p(z)v'(z))/g(z)] < N, for any solution
(0.1) (0.1)

yx of (2) satisfying |yx| <Y, & <Y < &, it follows that no solution lies
on 9V, i.e. H) has no fixed points on dV.
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