EXISTENCE OF SOLUTIONS FOR SINGULAR NONLINEAR TWO-POINT BOUNDARY VALUE PROBLEMS

T.S. Do and H.H. Lee

Introduction

In this paper we study existence questions of solutions for the singular nonlinear second-order boundary value problem

$$
\begin{array}{r}
\left(p(x) y^{\prime}(x)\right)^{\prime}=q(x) f\left(x, y(x), p(x) y^{\prime}(x)\right) \quad \text { on } \quad(0,1) \\
y(0)=-y(1) \quad \lim _{x \rightarrow 0^{+}} p(x) y^{\prime}(x)=-p(1) y^{\prime}(1) . \tag{1}
\end{array}
$$

The problem may be singular because $p(0)=0$ is allowed and q is not assumed to be continuous at 0 . The idea of considering such problems was motivated by [2-4]. Our analysis consists in determining a priori bounds on all solutions to related one-parameter family of problems and applying the topological transversality theorem of Granas [4], which relies on the notion of an essential map. By a solution we shall mean a function of class $C([0,1]) \cap C^{2}((0,1))$ that satisfies (1). Throughout this paper we assume that $p \in C^{1}(0,1], q \in C(0,1], p, q>0$ on $(0,1], q, 1 / p \in L^{1}(0,1)$, and f continuous on $[0,1] \times(-\infty, \infty) \times(-\infty, \infty)$.

A Priori Bounds on y_{λ}.
We consider the family of problems

$$
\begin{align*}
\left(p(x) y_{\lambda}^{\prime}(x)\right)^{\prime} & =\lambda q(x) f\left(x, y_{\lambda}(x), p(x) y_{\lambda}^{\prime}(x)\right) \quad \text { on } \quad(0,1) \\
y_{\lambda}(0) & =-y_{\lambda}(1), \quad \lim _{x \rightarrow 0^{+}} p(x) y_{\lambda}^{\prime}(x)=-p(1) y_{\lambda}^{\prime}(1) \tag{2}
\end{align*}
$$

Received February 27, 1991.
Revised April 8, 1991.
This research was supported by TGRC-KOSEF.
indexed by the parameter $\lambda \in[0,1]$.
Lemma 1. Let $p q$ be bounded and let there exist a constant $M>0$ and a differentiable function $g>0$ on $[M, \infty)$ such that $f(x, y, 0)<0$ on $(0,1) \times(-\infty,-M] \cup[M, \infty)$ and $-g(y) \leq f(x, y, z)$ for $y \geq M$. Define $G(\xi)=\frac{\xi-M}{\sqrt{\int_{m}^{\xi} g(\eta) d \eta}}$ for $\xi>M$ and $G_{0}=\sqrt{2 \max q p} \int_{0}^{1} \frac{d t}{p(t)}$. Then
(a) $\lim _{\xi \rightarrow \infty} G(\xi)>G_{0}$, then any solution y_{λ} of (2), independently of λ, satisfies $\left|y_{\lambda}(x)\right| \leq Y, x \in[0,1]$, for a constant Y.
(b) if $\lim _{\xi \rightarrow \infty} G(\xi)=0$ and $G(\xi)>G_{0}$, then there exists an interval $\left(\xi_{1}, \xi_{2}\right)$ such that no solution of (2) has its maximum value or absolute value of its minimum on $\left(\xi_{1}, \xi_{2}\right)$ and $\xi_{1}<\hat{\xi}<\xi_{2}$, where $\hat{\xi}$ is a zero greater than M of the equation

$$
\begin{equation*}
2 \int_{M}^{\xi} g(\eta) d \eta=(\xi-M) g(\xi) \tag{3}
\end{equation*}
$$

Proof. If $\lambda=0$, then the unique solution is $y_{0} \equiv 0$. Henceforth we assume $\lambda \in(0,1]$. Let y_{λ} be a solution for which y_{λ} has an interior maximum $y_{\lambda}\left(x_{0}\right)>M$ at $x_{0} \in(0,1)$. Since $f(x, y, 0)<0$ for $y>M, y_{\lambda}$ has neither a local minimum greater than M nor an inflection point with a horizontal tangent and a value greater than M. From the boundary condition $y_{\lambda}(0)=-y_{\lambda}(1)$, one end point has a nonpositive value. Thus there exists an interval $\left(\hat{x}, x_{0}\right)$ or (x_{0}, \hat{x}) satisfying $y_{\lambda}(\hat{x})=M$ and $y_{\lambda}{ }^{\prime}(x)$ a fixed sign there. On $\left(\hat{x}, x_{0}\right)$, we have $y_{\lambda}{ }^{\prime}(x)>0$ and

$$
-\lambda q p g\left(y_{\lambda}\right) y_{\lambda}{ }^{\prime} \leq\left(p y_{\lambda}{ }^{\prime}\right)^{\prime} p y_{\lambda}{ }^{\prime} .
$$

Integration on $\left(x, x_{0}\right) \subset\left(\hat{x}, x_{0}\right)$ and the boundedness of $p q$ yield

$$
\sqrt{2 \max q p} \frac{1}{p(x)} \geq \frac{y_{\lambda}^{\prime}(x)}{\sqrt{\int_{M}^{y_{\lambda}\left(x_{0}\right)} g(\eta) d \eta}} .
$$

From another integration on $\left(\hat{x}, x_{0}\right)$, we obtain

$$
\begin{equation*}
G\left(y_{\lambda}\left(x_{0}\right)\right) \leq G_{0} \tag{4}
\end{equation*}
$$

In the same manner we have (4) on $\left(x_{0}, \hat{x}\right)$. If $\lim _{\xi \rightarrow \infty} G(\xi)>G_{0}$, then any interior maximum is bounded by a constant Y. Suppose $\lim _{\xi \rightarrow \infty} G(\xi)=0$. Since $\lim _{\xi \rightarrow M} G(\xi)=0$ and $\lim _{\xi \rightarrow M} G^{\prime}(\xi)=\infty, G^{\prime}(\xi)=0$ has at least one
zero greater than M. Let $\hat{\xi}$ satisfy (3). Then $G(\hat{\xi})>G_{0}$ implies that $y_{\lambda}\left(x_{0}\right)$ does not lie between ξ_{1} and ξ_{2} such that $G\left(\xi_{1}\right)=G\left(\xi_{2}\right)=G_{0}$. Since y_{λ} has no interior minimum less that $-M$, we now consider an end point extremum. Suppose that a solution y_{λ} has the maximum at $x=1$ or 0 . If $y_{\lambda}^{\prime}(1)>0$, then y_{λ} can not achieve its minumum at $x=0$ and $y_{\lambda}(1)$ is less than the absolute value of interior minimum. Thus $p(1) y_{\lambda}^{\prime}(1)=\lim _{x \rightarrow 0} p(x) y_{\lambda}^{\prime}(x)=0$ for y_{λ} to achieve the maximum and minimum at end points. Assume $y_{\lambda}(1)>M$. Then there exists a point $x_{0} \in(0,1)$ such that $y_{\lambda}\left(x_{0}\right)=M$ and $y_{\lambda}^{\prime}(x)>0$ on $\left(x_{0}, 1\right)$. As in the proof of interior maximum we arrive at the inequality $G\left(y_{\lambda}(1)\right) \leq G_{0}$. The corresponding assertion holds for the case $y_{\lambda}(0)>M$. The lemma follows.

Lemma 2. Suppose there exists a positive constant M satisfying yf x, y, $0)>0$ on $(0,1] \times(-\infty,-M] \cup[M, \infty)$. Then for any solution y_{λ} of (2), $\lambda \in[0,1],\left|y_{\lambda}(x)\right| \leq M$ for x in $[0,1]$.
Proof. If a solution y_{λ} of (2) has a local maximum at $x_{0} \in(0,1)$, then $y_{\lambda}\left(x_{0}\right) \leq M$, and y_{λ} has no local minimum less than $-M$. Suppose y_{λ} has the maximum and minumum at end points. As shown in the proof of Lemma $1, \lim _{x \rightarrow 0} p(x) y_{\lambda}^{\prime}(x)=p(1) y_{\lambda}^{\prime}(1)=0$. If $y_{\lambda}(1)$ is the maximum greater than M, then $\lim _{x \rightarrow 1} y_{\lambda}{ }^{\prime \prime}(x)>0$. This implies that y_{λ} is decreasing near $x=1$. Contradiction. Similarly the minimum less than $-M$ does not occur at $x=1$. This implies that $\left|y_{\lambda}(1)\right|=\left|y_{\lambda}(0)\right| \leq M$.

A Priori Bounds on $p y_{\lambda}^{\prime}$.
Lemma 3. Let y_{λ} be a solution of (2) that satisfies $\left|y_{\lambda}\right| \leq Y$ for some constant Y and let f satisfy
(a) $|f(x, y, z)| \leq h(|z|)$ on $[0,1] \times[-Y, Y] \times(-\infty, \infty)$, where $h(z)$ is a continuous function on $[0, \infty)$ and
(b) $\int_{0}^{\infty} \frac{d z}{h(z)} d z>\int_{0}^{1} q(x) d x$ or
$\int_{0}^{\infty} \frac{z}{h(z)} d z>2 \max p(x) q(x) Y$ if $p q$ is bounded.
Then there exists a constant Z such that $\sup _{(0,1)}\left|p(x) y_{\lambda}^{\prime}(x)\right| \leq Z$.
Proof. y_{λ} is monotone or $y_{\lambda}^{\prime}\left(x_{0}\right)=0$ for some x_{0}. Considering monotone case first, we have on $(0,1)$ that

$$
\left(\left|p y_{\lambda}^{\prime}\right|\right)^{\prime} \leq\left|\left(p y_{\lambda}^{\prime}\right)^{\prime}\right| \leq q(x) h\left(\left|p y_{\lambda}^{\prime}\right|\right) .
$$

Multiplication by $1 / h\left(\left|p y_{\lambda}^{\prime}\right|\right)$ and integration over $(0, x) \subset(0,1)$ yields

$$
\begin{equation*}
\int_{0}^{\left|p y_{\lambda}^{\prime}(x)\right|} \frac{d z}{h(z)} \leq \int_{0}^{1} q(x) d x \tag{5}
\end{equation*}
$$

since $\lim _{x \rightarrow 0} p(x) y_{\lambda}^{\prime}(x)=0$. Now suppose y_{λ}^{\prime} vanishes at some point x_{0}. Then every $x \in[0,1]$ where $y_{\lambda}^{\prime} \neq 0$ belongs to an interval $\left(x, x_{0}\right)$ or $\left(x_{0}, x\right)$ such that y_{λ}^{\prime} has a fixed sign there. Similarly we obtain (5) again. If $p q$ bounded, by multiplying $\left|p y_{\lambda}^{\prime}\right| / h\left(\left|p y_{\lambda}^{\prime}\right|\right)$ instead of $1 / h\left(\left|p y_{\lambda}^{\prime}\right|\right)$ we have

$$
\int_{0}^{\left|p y_{\lambda}^{\prime}(x)\right|} \frac{z}{h(z)} d z \leq 2 \max p q Y
$$

The result follows.

Existence of Solutions

We shall prove the existence of solutions of (1) separately for the cases (a) and (b) in Lemma 1.

Theorem 1. Let there exist constants Y and Z such that any solution y_{λ} of (2) satisfies $\max _{[0,1]}\left|y_{\lambda}(x)\right| \leq Y$ and $\sup _{(0,1)}\left|p(x) y_{\lambda}^{\prime}(x)\right| \leq Z, 0 \leq \lambda \leq 1$. Then the problem (1) has a solution.
Proof. From the differential equation itself and the continuity of f it follows that

$$
\sup _{(0,1)}\left|\frac{\left(p(x) y_{\lambda}^{\prime}(x)\right)^{\prime}}{q(x)}\right| \leq N \equiv \sup _{[0,1] \times[-Y, Y] \times[-Z, Z]}|f(x, y, z)| .
$$

For appropriate functions v define

$$
\begin{aligned}
& \|v\|_{0}=\max _{[0,1]}|v(x)|, \quad\|v\|_{1}=\max \left(\|v\|_{0}, \sup _{(0,1)}\left|p(x) v^{\prime}(x)\right|\right), \\
& \|v\|_{2}=\max \left(\|v\|_{1}, \sup _{(0,1)}\left|\left(p(x) v^{\prime}(x)\right)^{\prime} / q(x)\right|\right) .
\end{aligned}
$$

Then we have the Banach spaces $\left(B,\|\cdot\|_{0}\right)=\left\{v \in C(0,1):\|v\|_{0}<\infty\right\}$, $\left(B_{1},\|\cdot\|_{1}\right)=\left\{v \in C[0,1] \cap C^{1}(0,1):\|v\|_{1}<\infty\right\}$, and $\left(B,\|\cdot\|_{2}\right)=$ $\left\{v \in C[0,1] \cap C^{2}(0,1):\|v\|_{2}<\infty\right\}$ and set a convex subset $\widehat{B_{2}}=\{v \in$ $\left.B_{2}: v(0)=-v(1), \lim _{x \rightarrow 0} p(x) v^{\prime}(x)=-p(1) v^{\prime}(1)\right\}$. Define the mappings $F_{\lambda}: B_{1} \rightarrow B$ by $\left(F_{\lambda} v\right)(x)=\lambda f\left(x, v(x), p(x) v^{\prime}(x)\right), j: \widehat{B_{2}} \rightarrow B_{1}$ by $j v=v$, and $L: \widehat{B_{2}} \rightarrow B$ by $(L v)(x)=\left(p(x) v^{\prime}(x)\right)^{\prime} / q(x)$. Clearly F_{λ}
is continuous. Let Ω be a bounded set in $\widehat{B_{2}}$. Then $j \Omega$ is uniformly bounded and equicontinuous and the Arzela-Ascoli theorem implies that j is completely continuous. Now we claim that L^{-1} exists and is continuous. The solution $v \in \widehat{B_{2}}$ of $L v=u$ for $u \in B$ is given uniquely by

$$
\begin{aligned}
v(x)= & \int_{0}^{x} \frac{1}{p(t)} \int_{0}^{t} q(s) u(s) d s d t \\
& +\int_{0}^{1} q(t) u(t) d t\left[\frac{1}{4} \int_{0}^{1} \frac{d t}{p(t)}-\frac{1}{2} \int_{0}^{x} \frac{d t}{p(t)}\right] \\
& -\frac{1}{2} \int_{0}^{1} \frac{1}{p(t)} \int_{0}^{t} q(s) u(s) d s d t .
\end{aligned}
$$

Hence L is one to one and onto. Since $\|L v\|_{0} \leq\|v\|_{2}$, by the Bounded Inverse Theorem L^{-1} is a continuous linear operator.

Let

$$
V \equiv\left\{v \in \widehat{B_{2}}:\|v\|_{2}<\max (Y, Z, N)+1\right\} .
$$

Then V is an open subset of the convex subset $\widehat{B_{2}}$ of the Banach space B_{2}. Now we define our compact homotopy $H_{\lambda}: \bar{V} \rightarrow \widehat{B_{2}}$ by $H_{\lambda} v=L^{-1} F_{\lambda} j v$. H_{λ} is fixed point free on ∂V by the construction of V. Since H_{0} is a constant map and thus essential, it follows by the topological transversality theorem that H_{1} is essential, i.e. (1) has a solution.

Our last theorem shows that the existence of such an interval [(b) in Lemma 1] is sufficient for us to apply the topological transversality theorem.

Theorem 2. Let the following hypotheses hold:
(H1) There exists an interval $\left(\xi_{1}, \xi_{2}\right)$ independently of $\lambda \in[0,1]$, such that no solution y_{λ} of (2) has the maximum value of $\left|y_{\lambda}\right|$ on $\left(\xi_{1}, \xi_{2}\right)$.
(H2) For any solution of (2) satisfying $\left|y_{\lambda}\right| \leq Y, \xi_{1}<Y<\xi_{2}$, there exists a constant Z such that $\sup \left|p(x) y_{\lambda}{ }^{\prime}(x)\right| \leq Z$.

$$
(0,1)
$$

Then (1) has a solution.
Proof. The proof closely parallels that of Theorem 1 with replacement of $\|v\|_{1},\|v\|_{2}$, and V by

$$
\begin{aligned}
\|v\|_{1} & =\max \left(\|v\|_{0} / Y, \sup _{(0,1)}\left|p(x) v^{\prime}(x)\right| / Z\right) \\
\|v\|_{2} & =\max \left(\|v\|_{1} / Y, \sup _{(0,1)}\left|\frac{\left(p(x) v^{\prime}(x)\right)^{\prime}}{q(x)}\right| \frac{1}{N}\right) \\
V & =\left\{v \in \widehat{B}_{2}:\|v\|_{2}<1+\varepsilon\right\}
\end{aligned}
$$

for ϵ small enough so that $Y(1+\epsilon)<\xi_{2}$. Since Z and N have the property that $\sup \left|p(x) v^{\prime}(x)\right| \leq Z$ and $\sup \left|\left(p(x) v^{\prime}(x)\right)^{\prime} / q(x)\right| \leq N$, for any solution $(0,1) \quad(0,1)$
y_{λ} of (2) satisfying $\left|y_{\lambda}\right| \leq Y, \quad \xi_{1}<Y<\xi_{2}$, it follows that no solution lies on ∂V, i.e. H_{λ} has no fixed points on ∂V.

References

[1] A.R. Aftabizadeh, C.P. Gupta, and J.-M. Xu, Existence and Uniqueness theorems for three-point boundary value problems, SIAM J. Math. Anal., 20(1989), 716-726.
[2] L.E. Bobisud, Existence of solutions for nonlinear singlular boundary value problems, Applic. Anal., to appear.
[3] D.R. Dunninger and J.C. Kurtz, Existence of solutions for some nonlinear singular boundary value problems, J. Math. Anal. Appl. 115(1986), 396-405.
[4] A. Grans, R.B. Guenther, and J.W. Lee, Nonlinear Boundary Value Problems for Ordinary Differential Equations, Dissertationes Mathematicae, Warsaw, 1985.
[5] S. Taliaferro, On Positive solutions of $y^{\prime \prime}+\phi(t) y^{-\lambda}=0$, Nonlinear Anal. 2(1978), 437-446.

Yeungnam Junior College of Technology, Taegu 705-037, Korea.

Department of Mathematics, Kyungpook National University, Taegu 702 701, Korea.

