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A NOTE ON MAXIMAL SUBGROUPS IN
FINITE GROUPS

R.R. Khazal

It is well known that if a finite group G has exactly one maximal
subgroup then |G| is divisible by one prime only and G is cyclic. In this
connection one might ask whether if G' has exactly two or three maximal
subgroups the above result could be extended. If G has exactly three
maximal subgroups then neither G needs to cyclic nor it is required for
|G| to be divisible by three primes. Klein 4-group V is an example.
However, in the other case, it is shown here that (G is indeed divisible
by two primes only and G is cyclic. Using this fact, it is proved further
that if a group G has exactly two ith maximal subgroups then all the
Sylow subgroups of G are cyclic and therefore GG is supersolvable. One
may recall that X; is an ith maximal subgroup of a group G if there exists
a series Xog = G D X; D X; D -+ D X; of subgroups where X; is a
maximal subgroup of X;_1,1 < k& <. All groups considered in this note
are finite.

Lemma 1. If a group G has exactly two maximal subgroups then G is
nilpotent.

Proof. Let M and M™ be the two maximal subgroups of G. If M £ G then
Ng(M) = M since M is maximal and [G : Ng(M)] > 2. However [G :
Ng(M))] is also the number of conjugates of M in G and since conjugate
of a maximal subgroup is again a maximal subgroup it follows that [G :
Ng(M)] =2 ie. [G: M]=2. This implies M>G. Similarly M*>G. Since
all the maximal subgroups of G are normal it follows that G is nilpotent.

Lemma 2. There ezists no p-group which has exactly two mazimal sub-
groups.
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Proof. Suppose the assertion is false. Then S = {X|X is a p-group and
X has exactly two maximal subgroups } # §. Claim that if X € S then
X is cyclic. Suppose the claim is false, then S; = {Y|Y € S and Y is not
cyclic } # 0. Let Y be an element of S; of least possible order. Therefore,
if T € S\S; then T is cyclic. Suppose M and M* are the two maximal
subgroups of ¥y and |Yy| = p". We need to consider two cases : Case L
MNM =<e>, Casell. My N M* #£< e >.

Case I. MNM* =< e >. Since M and M* are each normal in G, it
follows that Yo = M - M* and |Yg| = |M|-|M*|. Thus p* = p*~*'.p"~! and
p" = p®. Therefore Y, is elementary abelian since it is not cyclic. If a and
b are elements of Y then < a >, < b >, < ab > are all maximal subgroups
of Y, and we have a contradiction. Hence in this case it follows that S,
must be empty.

Case IL MNM* #< e >. Let T = M N M* and observe that TeGG. Now
consider Y,/T. Tt is a p—group, M/T, M*/T are two maximal subgroups
of Yo/T =Y, and Y, does not have any other maximal subgroup besides
M and M, since |Y,| < |Yo| it follows that Y, € S\S;. Hence Y is cyclic,
ie. Yo =<Z > for some T € Y. This implies ¥y =< z,T >=< z > since
T is indeed the Frattini subgroup of ¥; and we again have a contradiction.
Therefore S; must be empty and every element in S must be cyclic. If
X € X then X has got exactly one subgroup L of index p which must a
maximal subgroup of X. Any other subgroup of X will be contained in
L and therefore X cannot have another maximal subgroup. Thus § must
be empty and this proves the assertion in the lemma.

We omit the proof of the following well known result.

Lemma 3. If a group G has exactly one mazimal subgroup then G is a
cyclic p-group.

Theorem 1. Let G be a group which has only two mazimal subgroups.
Then G is cyclic and |G| is divisible by two distinct primes.

Proof. By Lemma 1, G is nilpotent and G = P, X P, x --- x P,,, where
P; is the Sylow p;—subgroup of G. We claim that m = 2. Suppose m > 2
and consider F; (note m # 1 by Lemma 2). If P; does not have a proper
subgroup then P; is cyclic of prime order and if P; has proper subgroup
we may conclude that P; has some maximal subgroup L;. In either of the
cases G has a maximal subgroup H = Py x Py x--- X Py x Pyy x---x P,
in the first case and H = Py x Po x --- X P,y X L; Xx Pyy x --- x P, in
the second case. Thus for each ¢ there is a maximal subgroup of G' and
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therefore m = 2 and G = P; x P,. Evidently, neither P, nor P; can have
more than one maximal subgroup. Consequently, it implies that P; and
P, are both cyclic and therefore G is cyclic and the theorem is proved.

The following well known theorem due to B. Huppert is used in the
proof of Theorem 3. We mention it here for the sake of completeness.

Theorem 2. If every mazimal subgroup of a group G s supersolvable
then GG is solvable.

Lemma 4. If every Sylow subgroup of a group G is cyclic then G 1s
supersolvable.

Proof. By induction every maximal subgroup of G is supersolvable and
hence G is solvable. Let N be a minimal normal subgroup of G. Then N
is cyclic and therefore has prime order. Consider G/N. It is supersolvable
by induction and so G is supersolvable.

Theorem 3. If a group G has only two ith mazimal subgroups for some
integer 1 then the Sylow subgroups of G are cyclic and G is supersolvable.
Proof. Let M; denote a kth maximal subgroup of G and consider an
(2 — 1)th maximal subgroup M;_;. Either M;_, has no proper subgroup
in which case M;_; is cyclic of prime order or else M;_; has at most two
maximal subgroups. In either of the cases M;_, is cyclic. If M;_; is an
(2 — 2)th maximal subgroup then it now follows that each one of its Sylow
subgroup must be cyclic and therefore M;_; is supersolvable. Let M;_; be
an (7 — j)the maximal subgroup and assume that all the Sylow subgroups
of M;_; are cyclic. Every Sylow subgroup of an (¢ — 7 — 1)th maximal
subgroup M;_;_, is contained in some (¢ — j)th maximal subgroup and so
is cyclic. It now follows by induction that every Sylow subgroup of G is
cyclic and by lemma 3 is supersolvable and the proof is complete.

It was remarked earlier that if a group G possesses exactly three max-
imal subgroups then the order of G need not be divisible by three primes,
G could be a p—group. In fact for such a p—group the prime p must be 2.

Proposition. There s no p-group for odd p with exactly three mazimal
subgroups.

Proof. Let Py, Pz, P3 be three maximal subgroups of a p—group P,p # 2
and |P| = p*. If LN P, =< e > then |P,P,| = |P| implies p* = p?
so that 7;:_—'11 = 3 and p = 2, a contradiction. Suppose N = P, N P, and
consider P/N. If N € P; and P/N is a p-group with exactly two maximal
subgroup P, /N and P;/N which is impossible. Thus N = P;NP,N P; and
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|P/N| = p™ for some integer n*. Since two maximal subgroups P,/N and
P,/N of P/N intersect trivially, p*° = p? and once again we get p = 2,
a contradiction. Therefore the assumption that the proposition is false is
wrong and the proof is complete.

The nonabelian 2—groups are all classified [Thm.14.9 p.91, [1]]. Evi-
dently, abelian groups having exactly three maximal subgroups can have
the order divisible by at most three primes. In fact a group with three
maximal subgroups which is not a p-group must be cyclic and its order is
divisible by three primes.

Theorem 4. A group G which has ezactly three mazimal subgroups and
is not a group of prime power order is necessarily cyclic and its order is
divisible by at most three primes.

Proof. Let My, M, M3 be the maximal subgroups of G. If none of M;<G,
i = 1,2,3 then Ng(M;) = M; and [G : Ng(M;)] = number of conjugates
of My = 3. For if [G : Ng(M;)] = 2 then [G : Mi] = 2 and so M,4G.
This however implies the indices of all the maximal subgroups are same.
If p|[G : Ng(M;)] = [G : M;] then there is a maximal subgroup containing
a Sylow p-subgroup and its index is prime to p. Consequently, the index
M, 1s not divisible by p and we have a contradiction. Hence M;<4G. This
implies M;aG as otherwise, [G : Ng(M3)] = [G : M) = number of conju-
gate of M; = 2 unless M34G. If M34G then M; is not conjugate of M3 or
M, and therefore M>4G. If on the other hand [G : M;] = 2, M2<G and
again M; then is necessarily normal in G. Thus all the Sylow subgroups of
G are normal and G = P; x Py x - - - x P,, where P; is a Sylow p;—subgroup
of G. Note m < 3, as otherwise G will have more than three maximal
subgroups. Thus |G| is divisible by at most three primes and m = 2 or
3. However if m = 2 i.e. G = P; x P, then G will have either less than
three or more than three maximal subgroups. This follows easily from the
consideration of maximal subgroups of P, and P,. Thus m = 3 and F;
has at most one maximal subgroup : = 1,2,3. This however implies that
G is cyclic and the proof is complete.

Corollary. A group G which has ezactly three second mazrimal subgroups
is solvable.

Proof. 1f M is any maximal subgroup of G then M has at most three maxi-
mal subgroups and therefore M is either cyclic or is a 2-group. Thus every
maximal subgroup of G is supersolvable and consequently G is solvable.

Remark. A group satisfying the condition in the corollary above will have
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cyclic Sylow subgroups corresponding to odd prime divisors of the group
order. A4 is an example of such group.

References

[1] Huppert, B., Normal teiler and mazimale Untergruppen endlicher Gruppen, Math.
Z. 60, 409-434 (1954).
[2] Huppert, B., Endlichen Gruppen I, Springer-Verlag, New York, 1967.

[3] Janko, A., Finife groups with invariant fourth mazimal subgroups, Math. Z. 82,
82-89 (1963).

DEPARTMENT OF MaTHEMATICS, KuwalT UNIVERSITY, P.O.Box 5969, 13060 SAFaT,
KuwarlT.



