A NOTE ON MAXIMAL SUBGROUPS IN FINITE GROUPS

R.R. Khazal

It is well known that if a finite group G has exactly one maximal subgroup then $|G|$ is divisible by one prime only and G is cyclic. In this connection one might ask whether if G has exactly two or three maximal subgroups the above result could be extended. If G has exactly three maximal subgroups then neither G needs to cyclic nor it is required for $|G|$ to be divisible by three primes. Klein 4 -group V is an example. However, in the other case, it is shown here that G is indeed divisible by two primes only and G is cyclic. Using this fact, it is proved further that if a group G has exactly two ith maximal subgroups then all the Sylow subgroups of G are cyclic and therefore G is supersolvable. One may recall that X_{i} is an ith maximal subgroup of a group G if there exists a series $X_{0}=G \supset X_{1} \supset X_{2} \supset \cdots \supset X_{i}$ of subgroups where X_{k} is a maximal subgroup of $X_{k-1}, 1 \leq k \leq i$. All groups considered in this note are finite.

Lemma 1. If a group G has exactly two maximal subgroups then G is nilpotent.
Proof. Let M and M^{*} be the two maximal subgroups of G. If $M \nless G$ then $N_{G}(M)=M$ since M is maximal and $\left[G: N_{G}(M)\right] \geq 2$. However $[G$: $\left.N_{G}(M)\right]$ is also the number of conjugates of M in G and since conjugate of a maximal subgroup is again a maximal subgroup it follows that $[G$: $\left.N_{G}(M)\right]=2$ i.e. $[G: M]=2$. This implies $M \unrhd G$. Similarly $M^{*} \unrhd G$. Since all the maximal subgroups of G are normal it follows that G is nilpotent.

Lemma 2. There exists no p-group which has exactly two maximal subgroups.

Received March 3, 1988.

Proof. Suppose the assertion is false. Then $S=\{X \mid X$ is a $p-$ group and X has exactly two maximal subgroups $\} \neq \emptyset$. Claim that if $X \in S$ then X is cyclic. Suppose the claim is false, then $S_{1}=\{Y \mid Y \in S$ and Y is not cyclic $\} \neq \emptyset$. Let Y_{0} be an element of S_{1} of least possible order. Therefore, if $T \in S \backslash S_{1}$ then T is cyclic. Suppose M and M^{*} are the two maximal subgroups of Y_{0} and $\left|Y_{0}\right|=p^{n}$. We need to consider two cases: Case I. $M \cap M^{*}=\langle e\rangle$, Case II. $\left.M_{1} \cap M^{*} \neq<e\right\rangle$.
Case I. $M \cap M^{*}=\langle e\rangle$. Since M and M^{*} are each normal in G, it follows that $Y_{0}=M \cdot M^{*}$ and $\left|Y_{0}\right|=|M| \cdot\left|M^{*}\right|$. Thus $p^{n}=p^{n-1} \cdot p^{n-1}$ and $p^{n}=p^{2}$. Therefore Y_{0} is elementary abelian since it is not cyclic. If a and b are elements of Y_{0} then $\langle a\rangle,\langle b\rangle,\langle a b\rangle$ are all maximal subgroups of Y_{0} and we have a contradiction. Hence in this case it follows that S_{1} must be empty.
Case II. $\left.M \cap M^{*} \neq<e\right\rangle$. Let $T=M \cap M^{*}$ and observe that $T \unlhd G$. Now consider Y_{0} / T. It is a p-group, $M / T, M^{*} / T$ are two maximal subgroups of $Y_{0} / T=\bar{Y}_{0}$ and \bar{Y}_{0} does not have any other maximal subgroup besides M and \bar{M}^{*}, since $\left|\bar{Y}_{0}\right|<\left|Y_{0}\right|$ it follows that $\bar{Y}_{0} \in S \backslash S_{i}$. Hence \bar{Y}_{0} is cyclic, i.e. $\bar{Y}_{0}=\langle\bar{x}\rangle$ for some $\bar{x} \in \bar{Y}_{0}$. This implies $Y_{0}=\langle x, T\rangle=\langle x\rangle$ since T is indeed the Frattini subgroup of Y_{0} and we again have a contradiction. Therefore S_{1} must be empty and every element in S must be cyclic. If $X \in X$ then X has got exactly one subgroup L of index p which must a maximal subgroup of X. Any other subgroup of X will be contained in L and therefore X cannot have another maximal subgroup. Thus S must be empty and this proves the assertion in the lemma.

We omit the proof of the following well known result.
Lemma 3. If a group G has exactly one maximal subgroup then G is a cyclic p-group.

Theorem 1. Let G be a group which has only two maximal subgroups. Then G is cyclic and $|G|$ is divisible by two distinct primes.

Proof. By Lemma 1, G is nilpotent and $G=P_{1} \times P_{2} \times \cdots \times P_{m}$, where P_{i} is the Sylow p_{i}-subgroup of G. We claim that $m=2$. Suppose $m>2$ and consider P_{i} (note $m \neq 1$ by Lemma 2). If P_{i} does not have a proper subgroup then P_{i} is cyclic of prime order and if P_{i} has proper subgroup we may conclude that P_{i} has some maximal subgroup L_{i}. In either of the cases G has a maximal subgroup $H=P_{1} \times P_{2} \times \cdots \times P_{i-1} \times P_{i+1} \times \cdots \times P_{m}$ in the first case and $H=P_{1} \times P_{2} \times \cdots \times P_{i-1} \times L_{i} \times P_{i+1} \times \cdots \times P_{m}$ in the second case. Thus for each i there is a maximal subgroup of G and
therefore $m=2$ and $G=P_{1} \times P_{2}$. Evidently, neither P_{1} nor P_{2} can have more than one maximal subgroup. Consequently, it implies that P_{1} and P_{2} are both cyclic and therefore G is cyclic and the theorem is proved.

The following well known theorem due to B. Huppert is used in the proof of Theorem 3. We mention it here for the sake of completeness.
Theorem 2. If every maximal subgroup of a group G is supersolvable then G is solvable.

Lemma 4. If every Sylow subgroup of a group G is cyclic then G is supersolvable.
Proof. By induction every maximal subgroup of G is supersolvable and hence G is solvable. Let N be a minimal normal subgroup of G. Then N is cyclic and therefore has prime order. Consider G / N. It is supersolvable by induction and so G is supersolvable.

Theorem 3. If a group G has only two ith maximal subgroups for some integer i then the Sylow subgroups of G are cyclic and G is supersolvable. Proof. Let M_{k} denote a k th maximal subgroup of G and consider an ($i-1$)th maximal subgroup M_{i-1}. Either M_{i-1} has no proper subgroup in which case M_{i-1} is cyclic of prime order or else M_{i-1} has at most two maximal subgroups. In either of the cases M_{i-1} is cyclic. If M_{i-2} is an $(i-2)$ th maximal subgroup then it now follows that each one of its Sylow subgroup must be cyclic and therefore M_{i-2} is supersolvable. Let M_{i-j} be an $(i-j)$ the maximal subgroup and assume that all the Sylow subgroups of M_{i-j} are cyclic. Every Sylow subgroup of an $(i-j-1)$ th maximal subgroup M_{i-j-1} is contained in some $(i-j)$ th maximal subgroup and so is cyclic. It now follows by induction that every Sylow subgroup of G is cyclic and by lemma 3 is supersolvable and the proof is complete.

It was remarked earlier that if a group G possesses exactly three maximal subgroups then the order of G need not be divisible by three primes, G could be a p-group. In fact for such a $p-$ group the prime p must be 2 .

Proposition. There is no p-group for odd p with exactly three maximal subgroups.
Proof. Let P_{1}, P_{2}, P_{3} be three maximal subgroups of a p-group $P, p \neq 2$ and $|P|=p^{n}$. If $P_{1} \cap P_{2}=<e>$ then $\left|P_{1} P_{2}\right|=|P|$ implies $p^{n}=p^{2}$ so that $\frac{p^{2}-1}{p-1}=3$ and $p=2$, a contradiction. Suppose $N=P_{1} \cap P_{2}$ and consider P / N. If $N \nsubseteq P_{3}$ and P / N is a p-group with exactly two maximal subgroup P_{1} / N and P_{2} / N which is impossible. Thus $N=P_{1} \cap P_{2} \cap P_{3}$ and
$|P / N|=p^{n^{*}}$ for some integer n^{*}. Since two maximal subgroups P_{1} / N and P_{2} / N of P / N intersect trivially, $p^{n^{*}}=p^{2}$ and once again we get $p=2$, a contradiction. Therefore the assumption that the proposition is false is wrong and the proof is complete.

The nonabelian 2-groups are all classified [Thm. 14.9 p.91, [1]]. Evidently, abelian groups having exactly three maximal subgroups can have the order divisible by at most three primes. In fact a group with three maximal subgroups which is not a p-group must be cyclic and its order is divisible by three primes.
Theorem 4. A group G which has exactly three maximal subgroups and is not a group of prime power order is necessarily cyclic and its order is divisible by at most three primes.
Proof. Let M_{1}, M_{2}, M_{3} be the maximal subgroups of G. If none of $M_{i} \unlhd G$, $i=1,2,3$ then $N_{G}\left(M_{1}\right)=M_{1}$ and $\left[G: N_{G}\left(M_{1}\right)\right]=$ number of conjugates of $M_{1}=3$. For if $\left[G: N_{G}\left(M_{1}\right)\right]=2$ then $\left[G: M_{1}\right]=2$ and so $M_{1} \unlhd G$. This however implies the indices of all the maximal subgroups are same. If $p \mid\left[G: N_{G}\left(M_{1}\right)\right]=\left[G: M_{1}\right]$ then there is a maximal subgroup containing a. Sylow p-subgroup and its index is prime to p. Consequently, the index M_{1} is not divisible by p and we have a contradiction. Hence $M_{1} \unlhd G$. This implies $M_{2} \unlhd G$ as otherwise, $\left[G: N_{G}\left(M_{2}\right)\right]=\left[G: M_{2}\right]=$ number of conjugate of $M_{2}=2$ unless $M_{3} \unlhd G$. If $M_{3} \unlhd G$ then M_{2} is not conjugate of M_{3} or M_{1} and therefore $M_{2} \unlhd G$. If on the other hand [G:M2] $=2, M_{2} \unlhd G$ and again M_{3} then is necessarily normal in G. Thus all the Sylow subgroups of G are normal and $G=P_{1} \times P_{2} \times \cdots \times P_{m}$ where P_{i} is a Sylow p_{i}-subgroup of G. Note $m \leq 3$, as otherwise G will have more than three maximal subgroups. Thus $|G|$ is divisible by at most three primes and $m=2$ or 3. However if $m=2$ i.e. $G=P_{1} \times P_{2}$ then G will have either less than three or more than three maximal subgroups. This follows easily from the consideration of maximal subgroups of P_{1} and P_{2}. Thus $m=3$ and P_{i} has at most one maximal subgroup $i=1,2,3$. This however implies that G is cyclic and the proof is complete.

Corollary. A group G which has exactly three second maximal subgroups is solvable.
Proof. If M is any maximal subgroup of G then M has at most three maximal subgroups and therefore M is either cyclic or is a 2-group. Thus every maximal subgroup of G is supersolvable and consequently G is solvable.

Remark. A group satisfying the condition in the corollary above will have
cyclic Sylow subgroups corresponding to odd prime divisors of the group order. A_{4} is an example of such group.

References

[1] Huppert, B., Normal teiler and maximale Untergruppen endlicher Gruppen, Math. Z. 60, 409-434 (1954).
[2] Huppert, B., Endlichen Gruppen I, Springer-Verlag, New York, 1967.
[3] Janko, A., Finite groups with invariant fourth maximal subgroups, Math. Z. 82, 82-89 (1963).

Department of Mathematics, Kuwait University, P.O.Box 5969, 13060 Safat, Kuwait.

