SPAN OF PRODUCT DOLD MANIFOLDS

Moo-Young Sohn

By using γ-operation in $K O$-theory, we estimate the upperbound of the number of linearly independent tangent vector fields on a product Dold manifold. As corollaries, we have similar results for a product of two real or complex projective spaces.

1. Introduction

The Dold manifold $D(m, n)$ of dimension $m+2 n$ is defined as the quotient manifold of $S^{m} \times C P(n)$ by identifying (x, z) with $(-x, \bar{z})$, where \bar{z} is the complex conjugate. $D(m, 0)$ and $D(0, n)$ are readily seen to be the real projective space $R P(m)$ and the complex projective space $C P(n)$, respectively.

In [8], J.J. Ucci determined the stable tangent bundle in terms of two canonical line bundles and the Grothendieck rings $K(D(m, n))$ and $K O(D(m, n))$ for the Dold manifold $D(m, n)$. He applied them to the problem of non-immersion and nonembedding for the manifold $D(m, n)$ using the methods initiated by M.F. Atiyah [1].

In this paper we shall derive an upper bounded of span of product Dold manifold.

Let $\phi(m)$ be the number of integer s with $0<s \leq m$ and $s \equiv 0,1,2$ or $4 \bmod 8$

$$
\delta^{*}(m, n)=\left\{\begin{array}{l}
\max \left\{s, 2\left[\frac{n}{2}\right] \left\lvert\, 2^{s-1}\binom{m+n+1}{s} \neq 0 \bmod 2^{\phi(m)}\right. \text { if } m \neq 0\right. \\
2\left[\frac{n}{2}\right] \quad \text { if } m=0 .
\end{array}\right.
$$

where $\left[\frac{n}{2}\right]$ denotes the integer part of $\frac{n}{2}$.
Note that $\delta^{*}(m, 0)=\delta(m)$ is defined in [7].
Received October 5, 1990.
Partially supported by a grant from TGRC-KOSEF.

Then our result can be stated as follows :
Theorem 3.2. The number of linearly independent fields of tangent vectors on $D(m, n) \times D(u, v)$ does not exceed $m+2 n+u+2 v-\max \left\{\delta^{*}(m, n)\right.$, $\left.\delta^{*}(u, v)\right\}$.

Theorem 3.2 can be viewed as an extension of Corollary 4.3 in H. Suzuki [7]. In what follows, M will mean a smooth closed manifold. By immersion and embedding we will mean C^{∞}-differentiable ones. A positive integer \imath will denote either itself or the trivial \imath-plane bundle over an appropriate space and $\imath \xi=\xi \oplus \xi \oplus \cdots \oplus \xi$ (\imath-times Whitney sum).

2. Known results for the Dold manifolds

Let $\tilde{\xi}$ be the canonical real line bundle over $R P(m)$, and let $\tilde{\eta}$ be the canonical complex line bundle over $C P(n)$. Define a line bundle ξ over $D(m, n)$ as follows : the total space $E(\xi)$ of ξ is obtained from $S^{m} \times$ $C P(n) \times R$ by identifying (x, z, t) with $(-x, \bar{z},-t)$. For $n=0, \xi$ is just the canonical line bundle $\widetilde{\xi}$ over $D(m, 0)=R P(m)$ which implies $i^{*} \xi=\tilde{\xi}$. We define another real $2-$ plane bundle ξ over $D(m, n)$ whose total space $E(\eta)$ is $S^{m} \times S^{2 n+1} \times C$ mudulo the identification $(x, \rho, w) \sim(x, \lambda \rho, \lambda w) \sim$ $(-x, \overline{\lambda \rho}, \overline{\lambda, w}) \sim(-x, \bar{\rho}, \bar{w}), \lambda \in S^{1} \subset C$. For $m=0, \eta$ is just the canonical complex line bundle $\tilde{\eta}$ over $D(0, n)=C P(n)$ considered as a real bundle (denoted by re $(\tilde{\eta})$) which implies $j^{*} \eta=\operatorname{re}(\tilde{\eta})$.

Now we can describe the tangent bundle $\tau(D(m, n))$ of the Dold manifold $D(m, n)[8]$:

Theorem 2.1. $\tau(D(m, n)) \oplus \xi \oplus 2=(m+1) \xi \oplus(n+1) \eta$.
Let F denote either the real field R or the complex field C and let $\operatorname{Vect}_{F}(M)$ denote the set of isomorphism classes of F-vector bundles over M. The Whitney sum of vector bundles makes $\operatorname{Vect}_{F}(M)$ a semi-group and the Grothendieck group $K_{F}(M)$ is the associated abelian group. The tensor product of vector bundles defines a commutative ring structure in $K_{F}(M)$. As usual, we use the notation $K O(M)$ and $K(M)$ for $K_{R}(M)$ and $K_{C}(M)$, respectively. Let x_{0} be a base point of M, then clearly $K O\left(x_{0}\right)=Z$. We define $\widetilde{K O}(M)=\operatorname{ker}\left\{i^{*}: K O(M) \rightarrow Z\right\}$, where i^{*} is the homomorphism induced by the natural inclusion $\left\{x_{0}\right\} \rightarrow M$, then clearly $K O(M) \approx Z \oplus \widetilde{K O}(M)$. We write $x=\xi-1, y=\eta-2-x$. In [8], J. Ucci has also computed the Grothendieck ring $\widehat{K O}(D(m, n))$.
Theorem 2.2. $\widetilde{K O}(D(m, n))$ contains a summand isomorphic to $Z_{2^{\phi(m)}} \oplus$
$Z^{\left[\frac{n}{2}\right]}$ generated by $x, y, y^{2}, \cdots, y^{\left[\frac{n}{2}\right]}$ with the relation $2^{\phi(m)} x=0$. The multiplicative structure $Z_{2 \phi(m)} \oplus Z^{\left[\frac{n}{2}\right]}$ is given by $x^{2}=-2 x$ and $x y=0$. Moreover, it can be shown that $y^{\left[\frac{n}{2}\right]+1}$ vanishes.

For $x \in \operatorname{Vec}_{R}(M)$, the vector bundle $\lambda^{i}(x)$ is defined by the exterior power operation $\Lambda^{i}(x), i=0,1,2,3, \cdots$. We define $\lambda_{t}(x)=\sum_{i=0}^{\infty} \lambda^{i}(x) t^{i}$, where t is an indeterminate. Let $A(M)$ denote the multiplicative group of formal power series in t with coefficient in $K O(M)$ and with constant term 1. Then λ_{t} is a homomorphism $\operatorname{Vect}_{R}(M) \rightarrow A(M)$. Hence we get a homomorphism $\lambda_{t}: K O(M) \rightarrow A(M)$ and operators $\lambda^{i}: K O(M) \rightarrow$ $K O(M)$ with $\lambda_{t}(x)=\sum_{i=0}^{\infty} \lambda^{i}(x) t^{i}$. The γ-operation in $K O(M), \gamma_{t}$: $K O(M) \rightarrow A(M)$, is defined by the requirement that $\gamma_{t}(x)=\lambda_{\frac{t}{1-t}}(x)$ and $\gamma_{t}(x)=\sum_{i=0}^{\infty} \gamma^{i}(x) t^{i}$ for $x \in K O(M)$. Now let $\tau(M)$ denote the tangent bundle over M and put $\widetilde{\tau}(M)=\tau(M)-\operatorname{dim}(M) \in \widetilde{K O}(M)$, the operation r^{i} gives us an information about the structure of tangent bundle on M as follows:

Theorem 2.3 If we have $r^{i}(\widetilde{\tau}) \neq 0$ for an i such that $0 \leq i \leq n$, then the number of linearly independent fields of tangent vectors on M does not exceed $n-i$.

Let $D(m, n), D(u, v)$ be the Dold manifolds and let

$$
\begin{aligned}
& \Pi_{1}: D(m, n) \times D(u, v) \rightarrow D(m, n) \\
& \Pi_{2}: D(m, n) \times D(u, v) \rightarrow D(u, v) \\
& \Pi_{\wedge}: \\
& D(m, n) \times D(u, v) \rightarrow D(m, n) \wedge D(u, v)
\end{aligned}
$$

be the canonical projection, where $D(m, n) \wedge D(u, v)$ is the Smash product of the Dold manifolds $D(m, n)$ and $D(u, v)$. The following comes from (2.3) of H. Suzuki [7].

Theorem 2.4. (i) The induced homomorphisms

$$
\begin{aligned}
& \Pi_{1}^{*}: \widetilde{K O}(D(m, n)) \rightarrow \widetilde{K O}(D(m, n) \times D(u, v)) \\
& \Pi_{2}^{*}: \widetilde{K O}(D(u, v)) \rightarrow \widetilde{K O}(D(m, n) \times D(u, v)) \\
& \Pi_{\wedge}^{*}: \widetilde{K O}(D(m, n) \wedge D(u, v)) \rightarrow \widetilde{K O}(D(m, n) \times D(u, v)),
\end{aligned}
$$

are injective and we have a direct sum decomposition

$$
\begin{aligned}
\widetilde{K O}(D(m, n) \times D(u, v))= & \Pi_{1}^{*}\left(\widetilde{K O}(D(m, n)) \oplus \Pi_{2}^{*}(\widetilde{K O}(D(u, v))\right. \\
& \oplus \Pi_{\wedge}^{*}(\widetilde{K O}(D(m, n) \wedge D(u, v))) .
\end{aligned}
$$

(ii) If $\delta \in \widetilde{K O}(D(m, n))$ and $\xi \in \widetilde{K O}(D(u, v))$, then $\Pi_{i}^{*}(\delta) \Pi_{2}^{*}(\zeta) \in \Pi_{\wedge}^{*}(\widetilde{K O}(D(m, n) \wedge$ $D(u, v)))$.

3. Linearly independent tangent vector fields on a product Dold manifolds

Put $\tau_{1}=\tau(D(m, n))$. Using Theorem 2.1, we have

$$
\begin{aligned}
\tilde{\tau_{1}} & =\tau_{1}(D(m, n))-(m+2 n) \\
& =(m+1) \xi+(n+1) \eta-\xi-2-m-2 n \\
& =(m+n+1) x+(n+1) y
\end{aligned}
$$

Since γ_{t} is homomorphism, $\gamma_{t}\left(\tilde{\tau}_{1}\right)=\gamma_{t}(x)^{(m+n+1)} \gamma_{t}(y)^{(n+1)}$ and since $\gamma_{t}(x)=1+x t, \gamma_{t}(y)=1+y t-t^{2}, y^{\left[\frac{n}{2}\right]+1}=0, x^{2}=-2 x, x y=0$.

$$
\begin{aligned}
\gamma_{t}\left(\tilde{\tau}_{1}\right) & =(1+x t)^{m+n+1}\left(1+y t-y t^{2}\right)^{n+1} \\
& =\left\{\sum_{i=0}^{m+n+1}\binom{m+n+1}{i} x^{i} t^{i}\right\}\left\{\sum_{j=0}^{n+1}\binom{n+1}{j} y^{j}\left(t-t^{2}\right)^{j}\right\} \\
& =\left\{1+\sum_{i=1}^{m+n+1}\binom{m+n+1}{i} x^{i} t^{i}\right\}\left\{1+\sum_{i=1}^{n+1}\left(\sum_{j=\left[\frac{i+1}{2}\right]}^{i} \alpha_{i j} y^{j}\right) t^{i}\right\} \\
& =1+\sum_{i=1}^{m+n+1}\left\{(-2)^{i-1}\binom{m+n+1}{i} x+\sum_{j=\left[\frac{i+1}{2}\right]}^{i} \alpha_{i j} y^{i}\right\} t^{i}
\end{aligned}
$$

where $\alpha_{i j}$ is integers and $\alpha_{i j}=0$ for $i>n+1$, and the coefficient of t^{s} is

$$
\gamma^{s}\left(\tilde{\tau}_{1}\right)=(-2)^{i-1}\binom{m+n+1}{i} x+\sum_{j=\left[\frac{i+1}{2}\right]}^{i} \alpha_{i j} y^{j} .
$$

Now let $\tau_{2}=\tau(D(u, v))$ be the tangent bundles and let μ, λ be the line and real 2-plane bundle over $D(u, v)$ respectively, and let $z=\mu-1$, $w=\lambda-2-z$. Then

$$
\begin{aligned}
\tilde{\tau} & =\tau(D(m, n) \times D(u, v))-(m+2 n+u+2 v) \\
& =\pi_{1}^{*}\left(\tau_{1}\right)+\pi_{2}^{*}\left(\tau_{2}\right)-(m+2 n+u+2 v) \\
& =\pi_{1}^{*}((m+n+1) x+(n+1) y)+\pi_{2}^{*}((u+v+1) z+(v+1) w)
\end{aligned}
$$

By using the property $\gamma_{t}(x+y)=\gamma_{t}(x) \gamma_{t}(y)$ and the naturality of operator γ_{t}, we have

$$
\begin{aligned}
\gamma_{t}(\tilde{\tau})= & \pi_{1}^{*}\left(\gamma_{t}(x)^{(m+n+1)} \gamma_{t}(y)^{n+1}\right) \pi_{2}^{*}\left(\gamma_{t}(z)^{(u+v+1)} \gamma_{t}(w)^{v+1}\right) \\
= & \left(1+\pi_{1}^{*}(x) t\right)^{m+n+1}\left(1+\pi_{1}^{*}(y)\left(t-t^{2}\right)\right)^{n+1}\left(1+\pi_{2}^{*}(z) t\right)^{u+v+1} \\
& \left(1+\pi_{2}^{*}(w)\left(t-t^{2}\right)\right)^{v+1} \\
= & {\left[1+\sum_{i=1}^{m+n+1}\left\{(-2)^{i-1}\binom{m+n+1}{i} \pi_{1}^{*}(x)+\sum_{j=\left[\frac{i+1}{2}\right]}^{i} \alpha_{i j} \pi_{1}^{*}(y)^{j}\right\} t^{i}\right] } \\
& {\left[1+\sum_{k=1}^{u+v+1}\left\{(-2)^{k-1}\binom{u+v+1}{k} \pi_{2}^{*}(z)+\sum_{\ell=\left[\frac{k+1}{2}\right]}^{k} \beta_{k \ell} \pi_{2}^{*}(w)^{\ell}\right\} t^{k}\right] }
\end{aligned}
$$

and so the coefficient of t^{s} is

$$
\begin{aligned}
\gamma^{s}(\tilde{\tau})= & (-2)^{s-1}\binom{m+n+1}{s} \pi_{1}^{*}(x)+\sum_{j=\left[\frac{s+1}{2}\right]}^{s} \alpha_{s j} \pi_{1}^{*}(y)^{j} \\
& +\sum_{a+c=s, 1 \leq a \leq s-1}\left\{(-2)^{a-1}\binom{m+n+1}{a} \pi_{1}^{*}(x) \sum_{b=\left[\frac{a+1}{2}\right]}^{a} \alpha_{a b} \pi_{1}^{*}(y)^{b}\right\} \\
& \left\{(-2)^{c-1}\binom{u+v+1}{c} \pi_{2}^{*}(z)+\sum_{d=\left[\frac{c+1}{2}\right]}^{c} \beta_{c d} \pi_{2}^{*}(w)^{d}\right. \\
& +(-2)^{s-1}\binom{u+v+1}{c} \pi_{2}^{*}(z)+\sum_{\ell=\left[\frac{s+1}{2}\right]}^{s} \beta_{s \ell} \pi_{2}^{*}(w)^{\ell} .
\end{aligned}
$$

Therefore, we have
Lemma 3.1. If $\gamma^{s}\left(\tilde{\tau}_{1}\right) \neq 0$ or $\gamma^{s}\left(\tilde{\tau}_{2}\right) \neq 0$ then $\gamma^{s}(\tilde{\tau}) \neq 0$.
By using the function $\delta^{*}(m, n)$ defined in the introduction we have the following results.

Theorem 3.2. The number of linearly independence fields of tangent vectors on $D(m, n) \times D(u, v)$ does not exceed $m+2 n+u+2 v-\max \left\{\delta^{*}(m, n)\right.$, $\left.d^{*}(u, v)\right\}$
Proof. We put $S_{0}=\max \left\{\delta^{*}(m, n), \delta^{*}(u, v)\right\}$. We can easily check that $0 \leq \delta^{*}(m, n) \leq m+2 n$ and $0 \leq \delta^{*}(u, v) \leq u+2 v$. Hence it follows that $0 \leq S_{0} \leq m+2 n+u+2 v$.
The cofficient of $t^{2\left[\frac{n}{2}\right]}$ is nonzero since $\alpha_{2\left[\frac{n}{2}\right],\left[\frac{n}{2}\right]} \neq 0$. Using the definition of δ^{*} and Lemma 3.1, we obtain the result.

Corollary 3.3. The number of linearly independent fields of tangent vectors on $\mathbf{R} P(m) \times \mathbf{R} P(u)$ does not exceed $m+u-\max \{\delta(m), \delta(u)\}$.

Corollary 3.4. The number of linearly independent fields of tangent vectors on $\mathbf{R} P(m) \times \mathbf{C} P(v)$ does not exceed $m+2 v-\max \left\{\delta(m), 2\left[\frac{v}{2}\right]\right\}$.

Corollary 3.5. The number of linearly independent fields of tangent vectors on $\mathbf{C} P(n) \times \mathbf{C} P(v)$ does not exceed $2 n+2 v-\max \left\{2\left[\frac{n}{2}\right], 2\left[\frac{v}{2}\right]\right\}$.

References

[1] M.F. Atiyah, Immersions and embeddings of manifolds, Topology, 1(1962), 125132.
[2] - K-theory (Benjamin Inc. New York, 1967).
[3] A. Dold, Erzeugende der Thomschen Algebra, Math. Z, 65(1956), 25-35.
[4] M. Hirsch, Immersions of manifolds, Trans. Amer. Math. Soc., 93(1959), 242-276.
[5] D. Husemoller, Fibre bundle (McGraw-Hill, New York, 1966).
[6] J.H. Kwak, S. Hong and M.Y. Sohn, Non-embeddability and non-immersibility of a product Dold manifold, Math. Japonica 34, No. 3(1989), 391-396.
[7] H. Suzuki, Operations in KO -theory and product of real projective spaces, Mem. Fac. Sci. Kyushu Univ. Ser. A, 18(1964), 140-153.
[8] J.J. Ucci, Immersions and embeddings of Dold manifolds, Topology, 4(1965), 283293.

Department of Mathematics, Changwon National University, Changwon 641-773, Korea.

