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SPAN OF PRODUCT DOLD MANIFOLDS

Moo-Young Sohn

By using v-operation in K O-theory, we estimate the upperbound of
the number of linearly independent tangent vector fields on a product
Dold manifold. As corollaries, we have similar results for a product of two
real or complex projective spaces.

1. Introduction

The Dold manifold D(m,n) of dimension m + 2n is defined as the
quotient manifold of S™ x C' P(n) by identifying (z, z) with (—z,z), where
Z is the complex conjugate. D(m,0) and D(0,n) are readily seen to be
the real projective space RP(m) and the complex projective space CP(n),
respectively.

In [8], J.J. Ucci determined the stable tangent bundle in terms of
two canonical line bundles and the Grothendieck rings K(D(m,n)) and
KO(D(m,n)) for the Dold manifold D(m,n). He applied them to the
problem of non-immersion and nonembedding for the manifold D(m,n)
using the methods initiated by M.F. Atiyah [1].

In this paper we shall derive an upper bounded of snan of product
Dold manifold.

Let ¢(m) be the number of integer s with 0 < s < m and s =0,1,2
or 4 mod 8

max{s, 2[2] | 2°7! (m+:+1) # 0 mod 2%(™) if m £ 0

i {2[%1 B =<0

where [3] denotes the integer part of 3.
Note that 6*(m,0) = é(m) is defined in [7].
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Then our result can be stated as follows :

Theorem 3.2. The number of linearly independent fields of tangent vec-
tors on D(m,n) x D(u,v) does not exceed m+2n+u+2v — max{6*(m,n),
& (u,v)}.

Theorem 3.2 can be viewed as an extension of Corollary 4.3 in H.
Suzuki [7]. In what follows, M will mean a smooth closed manifold. By
immersion and embedding we will mean C'*°—differentiable ones. A posi-
tive integer 2 will denote either itself or the trivial :—plane bundle over an
appropriate space and 1 = £ B P -+ & £ (+-times Whitney sum).

2. Known results for the Dold manifolds

Let £ be the canonical real line bundle over RP(m), and let 7 be the
canonical complex line bundle over CP(n). Define a line bundle £ over
D(m,n) as follows : the total space E(£) of £ is obtained from S™ x
CP(n) x R by identifying (z,2,t) with (—2,%,—t). For n = 0, £ is just
the canonical line bundle € over D(m,0) = RP(m) which implies "¢ = £.
We define another real 2-plane bundle £ over D(m,n) whose total space
E(n)is S™ x §2**1 x C' mudulo the identification (z, p,w) ~ (z, Ap, Aw) ~
(—z,Ap, A\, w) ~ (—z,p,@), A € S* C C. Form = 0, n is just the canonical
complex line bundle 7 over D(0,n) = CP(n) considered as a real bundle
(denoted by re(7)) which implies j*5 = re (7).

Now we can describe the tangent bundle 7(D(m,n)) of the Dold man-
ifold D(m,n) [8] :

Theorem 2.1. 7(D(m,n)) ®EB2=(m+ 1) & (n+ 1)y.

Let F' denote either the real field R or the complex field C' and let
Vect (M) denote the set of isomorphism classes of F-vector bundles over
M. The Whitney sum of vector bundles makes Vectp(M ) a semi-group
and the Grothendieck group Kp(M) is the associated abelian group. The
tensor product of vector bundles defines a commutative ring structure in
Kp(M). As usual, we use the notation KO(M) and K(M) for Kr(M)
and Ks(M), respectively. Let zp be a base point of M, then clearly
KO(zo) = Z. We define KO(M) = ker {i* : KO(M) — Z}, where i*
is the homomorphism induced by the natural inclusion {zo} — M, then
clearly KOM)~ Z® KOM). Wewritez={ -1, y=n—-2-2z. In
[8], J. Ucci has also computed the Grothendieck ring KO(D(m,n)).

Theorem 2.2. %(D(m,n)] contains a summand tsomorphic to Zyem)E
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Z131 generated by .y, y%,- -, y'2) with the relation 220™z = 0. The mul-
tiplicative structure Zysm) @ 213! is given by 22 = —2z and zy = 0.
Moreover, it can be shown that yZ1*1 vanishes.

For z € Vecg(M), the vector bundle A*(z) is defined by the exterior
power operation A'(z),7 = 0,1,2,3,---. We define \;(z) = 124 A (2)#,
where ¢ is an indeterminate. Let A(M) denote the multiplicative group
of formal power series in ¢ with coefficient in KO(M) and with constant
term 1. Then A, is a homomorphism Vectg(M) — A(M). Hence we get
a homomorphism A, : KO(M) — A(M) and operators A' : KO(M) —
KO(M) with A(z) = 22, AY(z)t'. The y-operation in KO(M), v :
KO(M) — A(M), is defined by the requirement that v;(z) = )\ﬁ(x) and

Y(z) = T2 ()t for z € KO(M). Now let (M) denote the tangent
bundle over M and put (M) = 7(M)—dim(M) € KO(M), the operation
rt gives us an information about the structure of tangent bundle on M as
follows:

Theorem 2.3 If we have r'(7) # 0 for an i such that 0 < i < n, then
the number of linearly independent fields of tangent vectors on M does not
exceed n — 1.

Let D(m,n), D(u,v) be the Dold manifolds and let
II; : D(m,n)x D(u,v) — D(m,n),
O, : D(m,n) x D(u,v) — D(u,v),
My : D(m,n) x D(u,v) — D(m,n) A D(u,v),
be the canonical projection, where D(m,n)A D(u,v) is the Smash product

of the Dold manifolds D(m,n) and D(u,v). The following comes from
(2.3) of H. Suzuki [7].

Theorem 2.4. (i) The induced homomorphisms
II; : KO(D(m,n)) = KO(D(m,n) x D(u,v)),
; : KO(D(u,v)) = KO(D(m,n) x D(u,v)),
I : KO(D(m,n)A D(u,v)) = KO(D(m,n) x D{u,v)),

are injective and we have a direct sum decomposition

KO(D(m,n) x D(u,v)) = IE(KO(D(m,n))® IE(KO(D(u,v))
GBI (KO(D(m,n) A D(u,v))).
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(i) If § € KO(D(m,n)) and £ € KO(D(u,v)), then I (§)I13(¢) € T4 (KO(D(m,n)A

D(u,v))).
3. Linearly independent tangent vector fields on a product Dold
manifolds

Put 71 = 7(D(m,n)). Using Theorem 2.1, we have

~

71 = m(D(m,n)) - (m+ 2n)
= (m4+1)+n+1lnp—£—-2-m—2n
= (m+n+lz+(n+1y

Since v; is homomorphism, 7(71) = 7 (z)™*"*Y 4,(y)"*) and since

1(z) =14 at, nly) = 1+ yt — %, yl3H =0, 22 = —2z,2y = 0.

w(f) = (L+at)™" (1 4yt -yt

- X (") 't*}{f(“”) (- 2))

i=0
m4n+1 m-}—n—i—l s n+1 ) -
SR ol (SR EUTIES »( ety
i §=1 le}:le_]

_ 1+m+§:+1{(_2);‘~1(m+:+1)1+ i: O(,-J-y'-}ii

e =14
where a;; is integers and «;; = 0 for 2 > n + 1, and the coefficient of ¢* is

i

7'(R) = (=2 (m +: * l)m + ) aiy’.

J=[4$]

Now let 7, = 7(D(u,v)) be the tangent bundles and let p, A be the line
and real 2-plane bundle over D(u,v) respectively, and let z = u — 1,
w=A—-2~—2z2. Then

7 = 7(D(m,n) x D(u,v)) — (m+2n + u + 2v)
= w(n) + m3(72) — (m+ 2n + u + 2v)
= w((mtn+ Do+ o+ Dy)+ 3+ o+ 1)z + (0+ Do)
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By using the property v;(z+y) = %:(2)¥(y) and the naturality of operator
~¢, we have

%(T) = 7)™ () )5 (r(2) T )y (w) )
= (1+x(z)t)" (1 + m ()t — )" (1 + w3 (2)t)
(14 m5(w)(t — %))+

m+n+1 ) J _
=+ 3 (e (M @+ 3wt
=1 i=[4)
utv+1 u v k
1473 1 (U )@+ 3 Aol
k=1

t=[4f1]

and so the coefficient of ¢* is

7 = (—2)’-‘(m+:+1)w;(x)+ > aymi()

=14

bT (e (M ) T awnio))

atc=s,1<a<ls-1 b=[-°—'§l]

c

{(~2) ( oL l)w;(z) + Y Buriw)?

)
s—pfutov+1\ , 2 "
+(=2) ( )wz(z)+ S Buritial.

‘ =14

Therefore, we have
Lemma 3.1. If v*(71) # 0 or v*(72) # 0 then v*(7) # 0.

By using the function 6*(m,n) defined in the introduction we have the
following results.

Theorem 3.2. The number of linearly independence fields of tangent
vectors on D(m,n)x D(u,v) does not exceed m+2n+u+2v—max{é*(m,n),
d*(u,v)}

Proof. We put Sy = max{é*(m,n),6*(u,v)}. We can easily check that
0 <6 (myn) < m+2n and 0 < §*(u,v) < u+ 2v. Hence it follows that
0<S<m+2n+u+2v.

The cofficient of ¢*3] is nonzero since agzyz] # 0. Using the definition of
6* and Lemma 3.1, we obtain the result.
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Corollary 3.3. The number of linearly independent fields of tangent vec-
tors on RP(m) x RP(u) does not ezceed m + v — max{§(m), é(u)}.

Corollary 3.4. The number of linearly independent ﬁelds of tangent vec-
tors on RP(m).x CP(v) does not exceed m + 2v — max{é(m), 2[3]}.

Corollary 3.5. The number of linearly independent fields of tangent vec-
tors on CP(n) x CP(v) does not exceed 2n + 2v — max{2[}],2[3]}.
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