Kyungpook Mathematical Journal Volume 31, Number 1, June, 1991

THE STRUCTURE OF TOPOLOGICAL REGULAR SEMIGROUPS

Younki Chae

Throughout, a semigroup will mean a topological semigroup, i.e., a Hausdorff space with a continuous associative multiplication. A semigroup S is termed regular if and only if $x \in xSx$ for each x in S [1]. If S is a regular semigroup, then for each $a \in S$, there exists an element $b \in S$ such that a = aba and b = bab (b is called an inverse of a). If b is an inverse of a, then ab and ba are both idempotents but are not always equal. It is quite clear that a regular semigroup S is a group if S has only one idempotent. Moreover, every regular I-semigroup is a semilattice and every almost pointwise periodic I-semigroup is also a semilattice [4]. For an element aof a regular semigroup S, we will adopt the notation

 $V(a) = \{x \in S \mid x \text{ is an inverse of } a\}.$

Let \leq be a quasi-order on a set X. For a subset A of X, the following notations will be standard [2], [3]:

$$L(A) = \{ y \in X \mid y \le x \text{ for some } x \in A \},$$

$$M(A) = \{ y \in X \mid x \le y \text{ for some } x \in A \},$$

$$I(A) = L(A) \cap M(A).$$

A quasi-order \leq on a topological space X is said to be *continuous* if and only if, whenever $a \not\leq b$ in X, there are open sets U and V, $a \in U$, $b \in V$, such that if $x \in U$ and $y \in V$, then $x \not\leq y$.

By Ward, it has been shown that a quasi-ordered topological space is continuous if and only if the graph of the quasi-order is closed [3]. A subset

Received October 8, 1990.

This work was done under the support of TGRC-KOSEF.

Younki Chae

A of a quasi-ordered topological space X is said to be *convex* provided A = I(A). X is said to be *quasi-locally convex* provided, whenever $x \in X$ and $I(x) \subset U$, an open set, there is a convex open set V such that $I(x) \subset V \subset U$.

As a generalization of the theorem obtained by Nachbin [2], Ward showed that a compact Hausdorff quasi-ordered topological space with continuous quasi-order is quasi-locally convex [3].

Lemma 1. Let \leq be a relation on a regular semigroup S by $x \leq y$ if and only if $x \in Sy$. Then \leq is a continuous quasi-order on S.

Proof. By using Wallace's theorem, the compactness of S gives the proof immediately.

All regular semigroups concerned are assumed to have this quasi-order. By Lemma 1 together with the fact that L(x) = Sx, one obtain the following useful results:

Lemma 2. Let S be a compact regular semigroup. Then S is quasi-locally convex.

Lemma 3. Let S be a regular semigroup and let $a \in V(x)$. Then

(1) L(x) = Sx = Sax = L(ax), M(x) = M(ax), and I(x) = I(ax).

(2) $L(x)ax = L(x), M(x)ax \subset M(x), and I(x)ax \subset I(x).$

Lemma 4. Let S be a commutative regular semigroup. Then

(1) $xy \leq x, y$ for $x, y \in S$.

(2) If $a \leq b$ and $c \leq d$, then $ac \leq bd$.

(3) ax is the identity for the ideal L(x) of S.

(4) I(x) = H(ax), the maximal subgroup of S with identity ax for every $a \in V(x)$.

(5) If a and b are inverses of x, then ax = bx.

Proof. (1) and (3) are obvious. To prove (4), let xa = ax = e. Then $e^2 = e$. Let $y \in H(e)$. Then y'y = e for some $y' \in H(e)$. Hence

$$y = ye = yax \in Sx = L(x),$$

 $x = xax = xe = xy'y \in Sy$, i.e., $y \in M(x)$.

Now let $y \in I(x)$. Then $y \in eSe$ and $e \in yS \cap Sy$, i.e., $y \in H(x)$. (5) is immediate from (3) and (4).

Theorem 5. Let S be a regular semigroup in which idempotents commute. Then

- (1) $V(a)V(b) \subset V(ba)$, for $a, b \in S$.
- (2) If $V(a) \cap V(a^n) \neq \emptyset$ for n > 1, then $a^n = a$.
- (3) If $x^n = x$ for n > 1 and if $x \in V(a)$, then $a^n = a$.

Proof. (1) Let $x \in V(a)$, $y \in V(b)$. Since ax and yb are idempotents,

$$(xy)(ba)(xy) = x(yb)(ax)y = x(ax)(yb)y = xy,$$

 $(ba)(xy)(ba) = b(ax)(yb)a = b(yb)(ax)a = ba.$

(2) Let $x \in V(a) \cap V(a^n)$. Then axa = a and $xa^n x = x$. Since ax and $a^n x$ are idempotents,

$$a = axa = a(xa^nx)a = (ax)(a^nx)a$$
$$= (a^nx)(ax)a = a^nxa = a^{n-1}(axa) = a^n$$

(3) Since $x \in V(a)$ and since $V(a)^n \subset V(a^n)$ by (1),

$$x = x^n \in V(a)^n \subset V(a^n), \quad \text{i.e.},$$
$$x \in V(a) \cap V(a^n) \neq \emptyset.$$

Hence $a^n = a$ by (2).

Lemma 6. Let S be a regular semigroup. Then

(1) V(x) is closed for each $x \in S$.

(2) L(x), M(x) and I(x) are closed for each $x \in S$ if S is compact.

Proof. (1) If $y \notin V(x)$, $x \neq xyx$. By the continuity of multiplication, there is an open set W such that $y \in W$ and $x \notin xWx$. Hence $\{y|x = xyx\}$ is closed. Similarly, $\{y|y = yxy\}$ is closed since $y \neq yxy$. Hence

$$V(x) = \{y|x = xyx\} \cap \{y|y = yxy\}$$

is closed. (2) is obvious since S is compact.

Definition. A semigroup S is said to have small property at $x \in S$ if and only if, for any open set U about I(x), there is an open subsemigroup V about I(x) contained in U. We say S has small property if it has small property at every point of S.

Theorem 7. Let S be a compact commutative regular semigroup and let $x \in S$. If L(x) has small property at x, then S has small property at x.

Proof. Let U be an open set containing I(x). Since S is compact, by Lemma 6, I(x) is compact. Then there is an open set P such that $I(x) \subset$

Younki Chae

 $P \subset P^* \subset U$, where P^* is the closure of P. Since P^* is compact, by Lemma 2, P^* is quasi-locally convex. Then there is a convex open set Vin P^* such that $I(x) \subset V \subset W$. Since L(x) has small property at x, there is an open set K in L(x) such that

$$I(x) \subset K \subset V \cap L(x), \quad K^2 \subset K.$$

Let $a \in V(x)$. Define a function $f: S \to L(x)$ by f(s) = sax. Then f is a continuous homomorphism.

By Lemma 3, $f^{-1}(K)$ is an open subsemigroup of S containing I(x). Now let $A = f^{-1}(K) \cap V$. Then A is open and $I(x) \subset A \subset U$. To show $A^2 \subset A$, let $b, c \in A$. Then $bcax \in V$. Since V is convex, by Lemma 4, $bc \in V$. Therefore S has small property at x.

If S is a semilattice, then S is a commutative regular semigroup and \leq is a partial order, and hence $I(x) = \{x\}$ for each $x \in X$. Therefore Theorem 7 gives the following corollary which is a result obtained by Lawson :

Corollary 8. Let S be a locally compact topological semilattice and let $x \in S$. If L(x) has small semilattices at x, then S has small semilattices at x [5].

Theorem 9. Let S be a compact commutative regular semigroup in which I(x) is a component of S for each $x \in S$. Then S has small property.

Proof. If $x \in S$, then L(x) is a compact commutative regular semigroup with the identity ax, where $a \in V(x)$. By Wallace [6],[8], L(x) has small property at x, and Theorem 7 completes the proof.

Theorem 9 is a generalization of the following corollary obtained by Lawson :

Corollary 13. If S is a locally compact, totally disconnected topological semi-lattice, then S has small semilattices.

References

- Clifford, A. H., and Preston, G. B., the Algebraic Theory of Semigroups I, Math. Surveys, 7, Amer. Math. Soc., 1961.
- [2] Nachbin, L., Topology and Order, D. Van Nostrand Co., Inc., Princeton, N.J., 1965.

- [3] Ward, I. E., Partially Ordered Topological Spaces, Proc. Amer. Math. Soc., 5, 1954.
- [4] Chae, Y., Almost Pointwise Periodic Semigroups II, Kyungpook Math. J., 21, 1981.
- [5] Lawson, J.D., Topological Semilattices With Small Semilattices, J. London Math. Soc., 1969.
- [6] Koch, R. J., On Monothetic Semigroups, Proc. Amer. Math. Soc., 8, 1957.
- [7] Iséki, K., A Characterization of Regular Semigroups, Proc. Japan Acad., 1956.
- [8] Wallace, A.D., A Note on Mobs, Anais da Academia Brasileira de Ciencias, 24, 1952.
- [9] Magill, K.D. and Subbiah, S., Green's Relations for Regular Elements of Semigroups of Endomorphisms, Can. J. Math., 26, 1974.

Department of Mathematics, Kyungpook National University, Taegu 702-701, Korea.