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THE STRUCTURE OF TOPOLOGICAL
REGULAR SEMIGROUPS

Younki Chae

Throughout, a semigroup will mean a topological semigroup, i.e., a
Hausdorff space with a continuous associative multiplication. A semigroup
S is termed regular if and only if ¢ € 25z for each z in S [1]. If Sis a
regular semigroup, then for each a € S, there exists an element b € S such
that @ = aba and b = bab (b is called an inverse of a). If b is an inverse of a,
then ab and ba are both idempotents but are not always equal. It is quite
clear that a regular semigroup S is a group if 5 has only one idempotent.
Moreover, every regular [-semigroup is a semilattice and every almost
pointwise periodic I-semigroup is also a semilattice [4]. For an element a
of a regular semigroup 5, we will adopt the notation

V(a) ={z € S|z is an inverse of a}.

Let < bea quasi-order on a set X. For a subset A of X, the following
notations will be standard [2], [3] :

L(A)={ye X |y <z forsome =z €& A},

M(A)={ye X |z <y forsome z€ A},
I{A) = L(A) N M(A).

A quasi-order < on a topological space X is said to be continuous if and
only if, whenever a £ b in X, there are open sets U and V,a € U, be V,
such that if x € U and y € V, then z £ y.

By Ward, it has been shown that a quasi-ordered topological space is
continuous if and only if the graph of the quasi-order is closed [3]. A subset
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A of a quasi-ordered topological space X is said to be convez provided
A=1I(A). X is said to be quasi-locally convez provided, whenever z € X
and I(z) C U, an open set, there is a convex open set V' such that I(z) C
vcb.

As a generalization of the theorem obtained by Nachbin [2], Ward
showed that a compact Hausdorff quasi-ordered topological space with
continuous quasi—order is quasi-locally convex [3].

Lemma 1. Let < be a relation on a reqular semigroup S by z < y if and
only if x € Sy. Then < is a continuous quasi-order on S.

Proof. By using Wallace’s theorem, the compactness of S gives the proof
immediately.

All regular semigroups concerned are assumed to have this quasi-order.
By Lemma 1 together with the fact that L(z) = Sz, one obtain the
following useful results:

Lemma 2. Let S be a compact regular semigroup. Then S is quasi-locally
conver.

Lemma 3. Let S be a regular semigroup and let a € V(z). Then
(1) L(z) = Sz = Saz = L(az), M(z) = M(az), and I(z) = I{az).
(2) L(z)az = L(z), M(z)az C M(z), and I(z)ax C I(z).

Lemma 4. Let S be a commutative reqular semigroup. Then

(1) zy < z,y forz,y € S.

(2) Ifa < b and ¢ < d, then ac < bd.

(3) az is the wdentity for the ideal L(z) of S.

(4) I(z) = H(az), the mazimal subgroup of S with identity ax for
every a € V(z).

(5) If a and b are inverses of z, then ax = bz.
Proof. (1) and (3) are obvious. To prove (4), let za = az = e. Then
e? =e. Let y € H(e). Then y'y = e for some y' € H(e). Hence

y = ye = yaz € Sz = L(z),
= zax = ze = zy'y € Sy,l.e,y € M(z).

Now let y € I(z). Then y € eSe and e € ySN Sy, i.e., y € H(z).
(5) is immediate from (3) and (4).

Theorem 5. Let S be a regular semigroup in which idempotents commute.
Then
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(1) V(a)V(b) C V(ba), for a,b e S.
(2) If V(e)NV(a™) # B forn > 1, then a™ = a.
(3) Ifz" ==z forn > 1 and if x € V(a), then a" = a.

Proof. (1) Let z € V(a), y € V(b). Since az and yb are idempotents,
(zy)(ba)(zy) = 2(yb)(ax)y = z(az)(ybly = zy,

(ba)(zy)(ba) = b(az)(yb)a = b(yd)(az)a = ba.

(2) Let z € V(a) N V(a®). Then aze = a and za™x = z. Since ax and
a™z are idempotents,

a = aza=a(za"z)a = (az)(a"z)a

= (a™z)(az)e = ¢"za = a* (aza) =
(3) Since z € V(a) and since V(a)® C V(a™) by (1),
z=2z" € V(a)" C V(a™), 1ie,

reVie)NnV(a") #0.
Hence a™ = a by (2).
Lemma 6. Let S be a regular semigroup. Then

(1) V(z) is closed for each z € S.

(2) L(z), M(z) and I(z) are closed for each z € S if S is compact.
Proof. (1) Ify € V(z), z # zyz. By the continuity of multiplication, there
is an open set W such that y € W and ¢ ¢ 2Waz. Hence {y|z = zyz} is
closed. Similarly, {y|ly = yzy} is closed since y # yzy. Hence

V(z) = {ylz = zyz} N {yly = yay}
is closed. (2) is obvious since S is compact.

Definition. A semigroup S is said to have small property at z € S if and
only if, for any open set U about I{z), there is an open subsemigroup V
about I(z) contained in U. We say S has small property if it has small
property at every point of S.

Theorem 7. Let S be a compact commutative reqular semigroup and let
z € S5. If L(z) has small property at x, then S has small property at z.

Proof. Let U be an open set containing /(z). Since S is compact, by
Lemma 6, I(z) is compact. Then there is an open set P such that I(z) C
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P c P* c U, where P* is the closure of P. Since P* is compact, by
Lemma 2, P* is quasi-locally convex. Then there is a convex open set V'
in P* such that I(z) C V € W. Since L(z) has small property at z, there
is an open set K in L(z) such that

Iz)c KcVnL(z), K°CK.

Let a € V(z). Define a function f : S — L(z) by f(s) = saz. Then f is
a continuous homomorphism.

By Lemma 3, f~!(K) is an open subsemigroup of S containing I(z).
Now let A= f~'(K)NV. Then A is open and I(z) C A C U. To show
A? C A, let b,c € A. Then bcaz € V. Since V is convex, by Lemma 4,
be € V. Therefore S has small property at .

If S is a semilattice, then S is a commutative regular semigroup and
< is a partial order, and hence I(z) = {z} for each € X. Therefore
Theorem 7 gives the following corollary which is a result obtained by
Lawson :

Corollary 8. Let S be a locally compact topological semilattice and let
z € S. If L(z) has small semilattices at z, then S has small semilattices
at z [5].

Theorem 9. Let S be a compact commutative regular semigroup in which
I(z) is a component of S for each x € S. Then S has small property.

Proof. If z € S, then L(z) is a compact commutative regular semigroup
with the identity az, where @ € V(z). By Wallace [6],[8], L(z) has small

property at z, and Theorem 7 completes the proof.

Theorem 9 is a generalization of the following corollary obtained by
Lawson :

Corollary 13. If S is a locally compact, totally disconnected topological
semi-lattice, then S has small semilattices.
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