Abstract
The purpose of this study was to observe the changes of the elemental transmission and bond strength between the metal and porcelain according to various kinds of ion beam mixing method. ion beam mixing of $meta1/SiO_2$ (silica), $meta1/Al_2O_3$(alumina) interfaces causes reactions when the $Ar^+$ was implanted into bilayer thin films using a 100KeV accelerator which was designed and constructed for this study. A vacuum evaporator used in the $10^{-5}-10^{-6}$ Torr vacuum states for the evaporation. For this study, three kinds of porcelain metal selected, -precious, semiprecious, and non-precious. Silica and alumina were deposited to the metal by the vacuum evaporator, separately. One group was treated by two kinds of dose of the ion beam mixing $(1\times10^{16}ions/cm^2,\;5\times10^{15}ions/cm^2)$, and the other group was not mixed, and analyzed the effects of ion beam mixing. The analyses of bond strength, elemental transmissions were performed by the electron spectroscopy of chemical analysis (ESCA), light and scanning electron microscope, scratch test, and micro Vickers hardness tests. The finding led to the following conclusions. 1. In the scanning electron and light microscopic views, ion beam mixed specimens showed the ion beam mixed indentation. 2. In the micro Vickers hardness and scratch tests, ion beam mixed specimens showed higher strength than that of non mixed specimens, however, nonprecious metal showed a little change in the bond strength between mixed and non mixed specimens. 3. In the scratch test, ion beam mixed specimens showed higher shear strength than that of non treated specimens at the precious and semiprecious groups. 4. In the ESCA analysis, Au-O and Au-Si compounds were formed and transmission of the Au peak was found ion beam mixed $SiO_2/Au$ specimen, simultaneously, in the higher and lower bonded areas, and ion beam mixed $SiO_2/Ni-Cr$ specimen, oxygen, that was transmitted from $SiO_2\;to\;SiO_2/Ni-Cr$ interface combined with 12% of Ni at the interface.