A Note on Separable Algebras

Soon-Man Choi

Dept. of Mathematics Edu., Jeonju National Teachers College, Jeonju, 560—757, Korea.

I. Introduction

Let A be an R-algebra, and let M be a two sided A/R-module. For an element $g \in Hom_R$ (A, M) if it satisfies the condition

$$g(ab)=ag(b)+g(a)b$$

for all a, $b \in A$, then g is said to be a *derivation*. In particular if there exists an element $m \in M$ such that

$$g(a)=am-ma(a \in A)$$

then g is called an inner derivation.

It is clear that an inner derivation g is a derivation because that for all a, $b \in A$

$$g(ab) = abm - mab$$
.

and on the other hand

$$ag(b)+g(a)b=a(bm-mb)+(am-ma)b$$

= $abm-amb+amb-mab$
= $abm-mab$,

where m is an element of M.

Moreover, if $g \in \text{Hom}_R(A, M)$ is derivation then g(1)=0, because that $g(1 \cdot 1)=g(1)=g(1)+g(1)$ implies that g(1)=0.

Let us put

$$Z_R^1(A, M) = \{f \in Hom_R(A, M) \mid f \text{ is a derivation}\}$$

 $B_R^1(A, M) = \{f \in Z_R^1(A, M) \mid f \text{ is an inner derivation}\}.$

Then it is obvious that

 1^0 . $Z_R^1(A, M)$ and $B_R^1(A, M)$ are R-modules.

 2^{0} . $B_{R}^{1}(A, M)$ is an R-submodule of $Z_{R}^{1}(A, M)$.

Definition 1.1. With the above notations

$$H_{R}^{1}(A, M)=Z_{R}^{1}(A, M)/B_{R}^{1}(A, M),$$

which is an R-module, is called the first Hochschild cohomology module of A with coefficients in M([5]).

The purpose of this paper is to show that an R-algebra A is R-separable if and only if H_R^1 (A, M)=0 for all two sided A/R-module M.

II. Preliminaries

Throughout this paper, we shall assume that R is a commutative ring with 1. For an R-algebra A, A^0 denotes the R-algebra opposite to A.

We shall set

$$A^e = A \otimes_R A^0$$

and call it the *enveloping algebra* of A. In this case, A has a structure as a left A^e -module induced by

$$(a \otimes a')b = aba', (a \otimes a' \in A^e, b \in A).$$

We define an Ae-module homomorphism

$$\mu: A \otimes A^0 \longrightarrow A$$

defined by $\mu(\sum a_i \otimes a_i') = \sum a_i \cdot a_i'$.

It follows that if A is commutative then μ is a ring homomorphism. We put Ker $\mu=J$, then we have an exact sequence of left A^e -modules:

$$0 \to I \to A^e \xrightarrow{\mu} A \to 0 \tag{*}$$

Proposition 2.1. I is the left ideal of Ae generated by all elements of the form

 $a \otimes 1 - 1 \otimes a$, $a \in A$.

Proof. It is obvious that

$$\mu(a\otimes 1-1\otimes a)=a-a=0.$$

Suppose that

$$\mu(a \otimes a') = aa' = 0.$$

Then

$$(a\otimes 1)(1\otimes a'-a'\otimes 1)=a\otimes a'$$

Therefore, $(A \otimes A^0)\{a \otimes 1 - 1 \otimes a \mid a \in A\} = J$. ///

We have the following ([1], [2], [3], [4]).

Property 2°. The following conditions on an R-algebra A are equivalent:

- (i) A is an A^e -projective module under the μ -structure.
- (ii) The above sequence (*) splits as a sequence of left A^e-modules.
- (iii) A^e contains an element e, which is called a separability idempotent, such that $\mu(e)=1$ and Je=0.

Definition 2.2. An R-algebra A is said to be *separable* if it satisfies the equivalent conditions of Property 2^0 .

Theorem 2.3. Let A be a separable R-algebra, and let

$$0 \rightarrow L \rightarrow M \stackrel{7}{\rightarrow} N \rightarrow 0 \ (**)$$

be an exact sequence of A-modules. If (**) splits as a sequence of R-modules then (**) also splits as an exact sequence of A-modules.

Proof. By our hypothesis there exists an R-module homomorphism $\Psi: N \to M$ such that $\eta \circ \Psi = 1_N$. We put

$$\Psi = \mathbf{e} \cdot \Psi : N \to M$$

where $e = \sum_{i} x_i \otimes y_i$ is a separability idempotent of A. We have to note that $Hom_R(N, M)$ is a two sided A/R-module (i.e., a left A^e -module) with operations

4

$$(a \otimes a') \cdot \Psi = a \Psi a',$$

that is,

$$((a \otimes a') \cdot \Psi)(n) = a\Psi(a'n)$$

for any $n \in N$, where $a \otimes a' \in A^e$ and $\Psi \in Hom_R(N, M)$. In this case, for all $n \in N$

$$\eta \circ \Psi'(n) = n \text{ because that}
\eta \circ \Psi'(n) = \eta(e\Psi(n)) = \eta(\sum_i x_i \otimes y_i) \Psi(n)
= \eta(\sum_i x_i \Psi y_i)(n)
= \eta(\sum_i x_i \Psi(y_i n))
= \sum_i x_i \eta \circ \Psi(y_i n)
= \sum_i x_i y_i n
= n$$

(Note that $\sum_{i} x_i y_i = 1$).

Moreover, Ψ' is an A-module homomorphism. In fact, since for all $a \in A$ $(a \otimes 1 - 1 \otimes a)e = 0$ we have

$$(a \otimes 1)e \Psi = (1 \otimes a)e \Psi (a \in A).$$

Thus for all $a \in A$ and for all $n \in N$

$$a \Psi'(n) = ((a \otimes 1)e \Psi)(n) = ((1 \otimes a)e \Psi)(n)$$

$$= (\sum_{i} x_{i} \otimes y_{i} a \cdot \Psi)(n)$$

$$= \sum_{i} x_{i} \Psi(y_{i} a n)$$

$$= (\sum_{i} (x_{i} \otimes y_{i}) \cdot \Psi)(a n)$$

$$= e \cdot \Psi(a n)$$

$$= \Psi'(a n).$$

Therefore the above (**) splits as a sequence of A-modules. ///

III. Main Result

We shall prove two properties with respect to separability.

Theorem 3.1. A is a separable R-algebra if and only if $H_R^1(A, M) = 0$ for all two-sided A/R-module M.

Proof. \Rightarrow : Let A be R-separable. Then there exists a separability idempotent $e = \sum_{i} x_{i} \otimes y_{i}$ (see Property 2^{0}). As in the proof of Theorem 2.3, since $\operatorname{Hom}_{R}(A, M)$ is a two sided A/R-module, for each $g \in Z_{R}^{1}(A, M)$

$$((a \otimes 1 - 1 \otimes a)e \cdot g)(1) = 0$$

$$\Rightarrow ((a \otimes 1) \cdot eg)(1) = ((1 \otimes a) \cdot eg)(1)$$

and thus for all $a \in A$

 $(\sum_{i} x_i y_i = 1).$

Hence

$$g(a) = \sum ax_i g(y_i) - \sum x_i g(y_i)a$$

We put $m = \sum_{i} x_{i}g(y_{i})$ then for all $a \in A$

$$g(a) = am - ma$$

That is, $g \in \mathbb{Z}^1_{\mathbb{R}}(A, M) \Rightarrow g \in \mathcal{B}^1_{\mathbb{R}}(A, M)$. We have $H^1_{\mathbb{R}}(A, M) = 0$.

 \Leftrightarrow : For all two sided A/R-module M we assume $H^1_R(A, M)=0$. Recall that $J=\mathrm{Ker}\mu$ is a two-sided A/R-module.

Hence, by our assumption $H^1_R(A, J)=0$. Take $[\tau] \in H^1_R(A, J)$ such that

for all
$$a \in A$$
 $\tau(a) = a \otimes 1 - 1 \otimes a$.

This is well-defined, because that for all $a, b \in A$

$$\tau(ab) = a \tau(b) + \tau(a)b$$

$$= a(b \otimes 1 - 1 \otimes b) + (a \otimes 1 - 1 \otimes a)b$$

$$= ab \otimes 1 - a \otimes b + a \otimes b - 1 \otimes ab$$

$$= ab \otimes 1 - 1 \otimes ab,$$

Since $H^1_R(A, J)=0$, we have $\tau \in \mathcal{B}^1_R(A, J)$, and there exists an element $m \in J$ such that for all $a \in A$

$$\tau(a) = am - ma$$
.

Thus we have the following:

$$am-ma=a\otimes 1-1\otimes a$$

and so

$$(a\otimes 1)(1\otimes 1-m)-(1\otimes a)(1\otimes 1-m)=0.$$

Therefore, $J(1 \otimes 1 - m) = 0$. Moreover $\mu(1 \otimes 1 - m) = 1$ because that $\mu(m) = 0$. This means that $1 \otimes 1 - m$ is a separability idempotent of A. Therefore, by Property 2^0 , A is a separable R-algebra. ///

References

- [1] L.N. Childs and F.R. DeMeyer, On automorphisms of separable algebras, *Pacific J. Math.*, 23(1967), 25~34.
- [2] F.R. DeMeyer, On automorphisms of separable algebras [], Pacific J. Math., 32(1970), 621~631.
- [3] F.R. DeMeyer and E. Ingraham, Separable algebras over commutative rings, Springer Verlag (1971).
- [4] S. Endo and Y. Watanabe, On separable algebra over a commutative ring, Osaks J. Math., 4(1967), 233~242.
- [5] A. Magid, Commutative algebras of Hochschild demension one, Proc. Amer. Math. Soc., 24 (1970), 530~532.